The effects of a digital health intervention on patient activation in chronic kidney disease

0
The effects of a digital health intervention on patient activation in chronic kidney disease
  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733 (2020).

  • Kidney Research UK. Kidney disease: A UK public health emergency. The health economics of kidney disease to 2033. (2023).

  • Hull, S. A., Nitsch, D., Caplin, B., Griffith, K. & Wheeler, D. C. The National CKD Audit: a primary care condition that deserves more attention. Br. J. Gen. Pract. : J. R. Coll. Gen. Practitioners 68, 356–357 (2018).

    Article 

    Google Scholar 

  • Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. (2011) 12, 7–11 (2022).

    Article 

    Google Scholar 

  • Greer, R. C., Crews, D. C. & Boulware, L. E. Challenges perceived by primary care providers to educating patients about chronic kidney disease. J. Ren. Care 38, 174–181 (2012).

    Article 

    Google Scholar 

  • Tuot, D. S. et al. CKD awareness in the general population: performance of CKD-specific questions. Kidney Med. 1, 43–50 (2019).

    Article 

    Google Scholar 

  • Evans, M. et al. A narrative review of chronic kidney disease in clinical practice: current challenges and future perspectives. Adv. Ther. 39, 33–43 (2022).

    Article 

    Google Scholar 

  • NHS England. The NHS Long Term Plan (2019).

  • National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease: Assessment And Management (2021).

  • Lightfoot, C. J. et al. Patient activation: the cornerstone of effective self-management in chronic kidney disease? Kidney Dialysis 2, 91–105 (2022).

    Article 

    Google Scholar 

  • Hibbard, J. H., Stockard, J., Mahoney, E. R. & Tusler, M. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv. Res. 39, 1005–1026 (2004).

    Article 

    Google Scholar 

  • Lightfoot, C. J. et al. The codevelopment of “My Kidneys & Me”: a digital self-management program for people with chronic kidney disease. J. Med. Internet Res. 24, e39657 (2022).

    Article 

    Google Scholar 

  • Lightfoot, C. J., Wilkinson, T. J., Yates, T., Davies, M. J. & Smith, A. C. ‘Self-Management Intervention through Lifestyle Education for Kidney health’ (the SMILE-K study): protocol for a single-blind longitudinal randomised controlled trial with nested pilot study. BMJ Open 12, e064916 (2022).

    Article 

    Google Scholar 

  • Hibbard, J. H., Greene, J. & Tusler, M. Improving the outcomes of disease management by tailoring care to the patient’s level of activation. Am. J. Manag Care 15, 353–360 (2009).

    Google Scholar 

  • Lindsay, A., Hibbard, J. H., Boothroyd, D. B., Glaseroff, A. & Asch, S. M. Patient activation changes as a potential signal for changes in health care costs: cohort study of US high-cost patients. J. Gen. Intern. Med. 33, 2106–2112 (2018).

    Article 

    Google Scholar 

  • Miller, V. M. et al. Increasing patient activation through diabetes self-management education: Outcomes of DESMOND in regional Western Australia. Patient Educ. Couns. 103, 848–853 (2020).

    Article 

    Google Scholar 

  • Shah, V. O. et al. A home-based educational intervention improves patient activation measures and diabetes health indicators among Zuni Indians. PLoS ONE 10, e0125820 (2015).

    Article 

    Google Scholar 

  • Deen, D., Lu, W.-H., Rothstein, D., Santana, L. & Gold, M. R. Asking questions: the effect of a brief intervention in community health centers on patient activation. Patient Educ. Couns. 84, 257–260 (2011).

    Article 

    Google Scholar 

  • Lightfoot, C. J., Wilkinson, T. J., Memory, K. E., Palmer, J. & Smith, A. C. Reliability and validity of the patient activation measure in kidney disease: results of rasch analysis. Clin. J. Am. Soc. Nephrol. 16, 880–888 (2021).

    Article 

    Google Scholar 

  • Narva, A. S., Norton, J. M. & Boulware, L. E. Educating patients about CKD: the path to self-management and patient-centered care. Clin. J. Am. Soc. Nephrol. 11, 694–703 (2016).

    Article 

    Google Scholar 

  • Tuot, D. S. et al. Variation in patients’ awareness of CKD according to how they are asked. Clin. J. Am. Soc. Nephrol. 11, 1566–1573 (2016).

    Article 

    Google Scholar 

  • Devraj, R., Borrego, M. E., Vilay, A. M., Pailden, J. & Horowitz, B. Awareness, self-management behaviors, health literacy and kidney function relationships in specialty practice. World J. Nephrol. 7, 41–50 (2018).

    Article 

    Google Scholar 

  • Wilkinson, T. J., Memory, K., Lightfoot, C. J., Palmer, J. & Smith, A. C. Determinants of patient activation and its association with cardiovascular disease risk in chronic kidney disease: a cross-sectional study. Health Expect. 24, 843–852 (2021).

    Article 

    Google Scholar 

  • Magadi, W. et al. Patient activation and its association with symptom burden and quality of life across the spectrum of chronic kidney disease stages in England. BMC Nephrol. 23, 45 (2022).

    Article 

    Google Scholar 

  • Johnson, M. L. et al. Patient activation with knowledge, self-management and confidence in chronic kidney disease. J. Ren. Care 42, 15–22 (2016).

    Article 

    Google Scholar 

  • Vélez-Bermúdez, M., Christensen, A. J., Kinner, E. M., Roche, A. I. & Fraer, M. Exploring the relationship between patient activation, treatment satisfaction, and decisional conflict in patients approaching end-stage renal disease. Ann. Behav. Med. 53, 816–826 (2019).

  • Gair, R. M. et al. Transforming Participation In Chronic Kidney Disease: Programme Report (Renal Association, 2019).

  • Greenwood, S. A. et al. Evaluating the effect of a digital health intervention to enhance physical activity in people with chronic kidney disease (Kidney BEAM): a multicentre, randomised controlled trial in the UK. The Lancet Digital Health, 6, e23–e32 (2023).

  • Barker, F., Atkins, L. & de Lusignan, S. Applying the COM-B behaviour model and behaviour change wheel to develop an intervention to improve hearing-aid use in adult auditory rehabilitation. Int. J. Audiol. 55, S90–S98 (2016).

    Article 

    Google Scholar 

  • O’Connor, S. et al. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med. Inform. Decis. Mak. 16, 120 (2016).

    Article 

    Google Scholar 

  • Smekal, M. D. et al. Enhancing primary care capacity in chronic kidney disease management: a quality improvement educational initiative. BMJ Open 11, e046068 (2021).

    Article 

    Google Scholar 

  • Shlipak, M. G. et al. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 99, 34–47 (2021).

    Article 

    Google Scholar 

  • NHS England & NHS Improvement. The Interface Between Primary And Secondary Care: Key Messages For NHS Clinicians And Managers (NHS, 2017).

  • Mallinckrodt, C. H., Watkin, J. G., Molenberghs, G. & Carroll, R. J. Choice of the primary analysis in longitudinal clinical trials. Pharm. Stat. 3, 161–169 (2004).

    Article 

    Google Scholar 

  • Siddiqui, O., Hung, H. M. J. & O’Neill, R. MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets. J. Biopharm. Stat. 19, 227–246 (2009).

    Article 

    Google Scholar 

  • Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. Applied Longitudinal Analysis (John Wiley & Sons, 2004).

  • Dinh, P. & Yang, P. Handling baselines in repeated measures analyses with missing data at random. J. Biopharm. Stat. 21, 326–341 (2011).

    Article 

    Google Scholar 

  • Lightfoot, C. J. et al. Improving self-management behaviour through a digital lifestyle intervention: an internal pilot study. J. Ren. Care 50, 283–296 (2024).

    Article 

    Google Scholar 

  • Kanu, C., Brown, C., Barner, J., Chapman, C. & Walker, H. The effect of a tailored patient activation intervention in inflammatory bowel disease patients. J. Contemp. Pharm. Pract. 66, 11–21 (2020).

    Article 

    Google Scholar 

  • Schulz, K. F., Altman, D. G. & Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 7, e1000251 (2010).

    Article 

    Google Scholar 

  • Hadjiconstantinou, M. et al. Using Intervention Mapping to Develop a Digital Self-Management Program for People With Type 2 Diabetes: Tutorial on MyDESMOND. J. Med. Internet Res. 22, e17316 (2020).

    Article 

    Google Scholar 

  • Davies, M. J. et al. Effectiveness of the diabetes education and self management for ongoing and newly diagnosed (DESMOND) programme for people with newly diagnosed type 2 diabetes: cluster randomised controlled trial. BMJ 336, 491–495 (2008).

    Article 

    Google Scholar 

  • Corbin, J. M. & Strauss, A. Unending Work And Care: Managing Chronic Illness At Home (Jossey-Bass, 1988).

  • Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).

    Article 

    Google Scholar 

  • Michie, S. et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann. Behav. Med. 46, 81–95 (2013).

    Article 

    Google Scholar 

  • Schwarzer, R. Self-efficacy: Thought Control Of Action. p. 217-243 (Hemisphere Publishing Corp, 1992).

  • Leventhal, H., Meyer, D. & Nerenz, D. Medical Psychology (S., RACHMAN, 1980).

  • Bandura, A. Social cognitive theory of self-regulation. Organ Behav. Hum. Decis. Process 50, 248–287 (1991).

    Article 

    Google Scholar 

  • Hibbard, J. H., Mahoney, E. R., Stockard, J. & Tusler, M. Development and testing of a short form of the patient activation measure. Health Serv. Res. 40, 1918–1930 (2005).

    Article 

    Google Scholar 

  • Devraj, R. & Wallace, L. S. Application of the content expert process to develop a clinically useful low-literacy Chronic Kidney Disease Self-Management Knowledge Tool (CKD-SMKT). Res. Soc. Adm. Pharm. 9, 633–639 (2013).

    Article 

    Google Scholar 

  • Brown, S. A. et al. Kidney symptom questionnaire: development, content validation and relationship with quality of life. J. Renal Care, 44, 162–173 (2018).

  • Malmstrom, T. K., Miller, D. K., Simonsick, E. M., Ferrucci, L. & Morley, J. E. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 7, 28–36 (2016).

    Article 

    Google Scholar 

  • Ahmad, S. et al. Evaluation of reliability and validity of the General Practice Physical Activity Questionnaire (GPPAQ) in 60–74 year old primary care patients. BMC Fam. Pract. 16, 113 (2015).

    Article 

    Google Scholar 

  • Wilkinson, T. J., Palmer, J., Gore, E. F. & Smith, A. C. The validity of the ‘General Practice Physical Activity Questionnaire’ against accelerometery in patients with chronic kidney disease. Physiother. Theory Pract. 38, 1–10 (2020).

  • England, C. Y., Thompson, J. L., Jago, R., Cooper, A. R. & Andrews, R. C. Development of a brief, reliable and valid diet assessment tool for impaired glucose tolerance and diabetes: the UK Diabetes and Diet Questionnaire. Public Health Nutr. 20, 191–199 (2017).

    Article 

    Google Scholar 

  • Chan, A. H. Y., Horne, R., Hankins, M. & Chisari, C. The Medication Adherence Report Scale: a measurement tool for eliciting patients’ reports of nonadherence. Br. J. Clin. Pharmacol. 86, 1281–1288 (2020).

    Article 

    Google Scholar 

  • Al-Jabi, S. W. et al. Depression in patients treated with haemodialysis: a cross-sectional study. Lancet 391, 41 (2017).

    Article 

    Google Scholar 

  • Kieser, M. & Friede, T. Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Stat. Med. 19, 901–911 (2000).

    Article 

    Google Scholar 

  • Harden, M. & Friede, T. Sample size recalculation in multicenter randomized controlled clinical trials based on noncomparative data. Biom. J. 62, 1284–1299 (2020).

    Article 

    Google Scholar 

  • Wittes, J. & Brittain, E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat. Med 9, 65–71 (1990).

    Article 

    Google Scholar 

  • Friede, T. & Kieser, M. Sample size recalculation in internal pilot study designs: a review. Biom. J. 48, 537–555 (2006).

    Article 

    Google Scholar 

  • Chin, R. & Lee, B. Principles And Practice Of Clinical Trial Medicine. p. 303–323 (Academic Press, 2008).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *