Implantable bioelectronics and wearable sensors for kidney health and disease

Francis, A. et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat. Rev. Nephrol. 20, 473–485 (2024).
Google Scholar
Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).
Google Scholar
Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Primers 7, 52 (2021).
Google Scholar
Tucker, E. L. et al. Life and expectations post-kidney transplant: a qualitative analysis of patient responses. BMC Nephrol. 20, 175 (2019).
Google Scholar
Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).
Google Scholar
Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).
Google Scholar
Delanaye, P., Cavalier, E. & Pottel, H. Serum creatinine: not so simple! Nephron 136, 302–308 (2017).
Google Scholar
Ostermann, M. et al. Biomarkers in acute kidney injury. Ann. Intensive Care 14, 145 (2024).
Google Scholar
Seki, M. et al. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC Nephrol. 20, 1–10 (2019).
Google Scholar
Sharma, S. & Smyth, B. From proteinuria to fibrosis: an update on pathophysiology and treatment options. Kidney Blood Press. Res. 46, 411–420 (2021).
Google Scholar
Carrero, J. J. et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 91, 244–251 (2017).
Google Scholar
Menon, M. C., Murphy, B. & Heeger, P. S. Moving biomarkers toward clinical implementation in kidney transplantation. J. Am. Soc. Nephrol. 28, 735–747 (2017).
Google Scholar
Bloom, R. D. & Augustine, J. J. Beyond the biopsy: monitoring immune status in kidney recipients. Clin. J. Am. Soc. Nephrol. 16, 1413–1422 (2021).
Google Scholar
El-Bandar, N. et al. Kidney perfusion in contrast-enhanced ultrasound (CEUS) correlates with renal function in living kidney donors. J. Clin. Med. 11, 791 (2022).
Google Scholar
Singla, R. K., Kadatz, M., Rohling, R. & Nguan, C. Kidney ultrasound for nephrologists: a review. Kidney Med. 4, 100464 (2022).
Google Scholar
Thurman, J. & Gueler, F. Recent advances in renal imaging. F1000Res 7, F1000 (2018).
Google Scholar
Francis, S. T., Selby, N. M. & Taal, M. W. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: moving toward clinical application. Am. J. Kidney Dis. 82, 491–504 (2023).
Google Scholar
Hull, K. L., Adenwalla, S. F., Topham, P. & Graham-Brown, M. P. Indications and considerations for kidney biopsy: an overview of clinical considerations for the non-specialist. Clin. Med. 22, 34–40 (2022).
Google Scholar
Schnuelle, P. Renal biopsy for diagnosis in kidney disease: indication, technique, and safety. J. Clin. Med. 12, 6424 (2023).
Google Scholar
Poggio, E. D. et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin. J. Am. Soc. Nephrol. 15, 1595–1602 (2020).
Google Scholar
Bufkin, K. B., Karim, Z. A. & Silva, J. Review of the limitations of current biomarkers in acute kidney injury clinical practices. SAGE Open. Med. 12, 20503121241228446 (2024).
Google Scholar
Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).
Google Scholar
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Google Scholar
Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).
Google Scholar
Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).
Google Scholar
Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).
Google Scholar
Kukkar, D., Zhang, D., Jeon, B. H. & Kim, K.-H. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: performance evaluation and future challenges. TrAC. Trends Anal. Chem. 150, 116570 (2022).
Google Scholar
Tricoli, A. & Neri, G. Miniaturized bio-and chemical-sensors for point-of-care monitoring of chronic kidney diseases. Sensors 18, 942 (2018).
Google Scholar
Strauss, C., Booke, H., Forni, L. & Zarbock, A. Biomarkers of acute kidney injury: from discovery to the future of clinical practice. J. Clin. Anesth. 95, 111458 (2024).
Google Scholar
Dhondup, T. & Qian, Q. Acid-base and electrolyte disorders in patients with and without chronic kidney disease: an update. Kidney Dis. 3, 136–148 (2017).
Google Scholar
Tesch, G. H. Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology 15, 609–616 (2010).
Google Scholar
Gowda, S. et al. Markers of renal function tests. N. Am. J. Med. Sci. 2, 170–173 (2010).
Google Scholar
Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).
Google Scholar
Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).
Google Scholar
Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab. Chip 19, 1545–1555 (2019).
Google Scholar
Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).
Google Scholar
Kim, S. B. et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 14, e1802876 (2018).
Google Scholar
Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).
Google Scholar
Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).
Google Scholar
Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).
Google Scholar
al-Tamer, Y. Y., Hadi, E. A. & al-Baldrani, I. I.Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol. Res. 25, 337–340 (1997).
Google Scholar
Yang, Y. R. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).
Google Scholar
Adelaars, S. et al. The correlation of urea and creatinine concentrations in sweat and saliva with plasma during hemodialysis: an observational cohort study. Clin. Chem. Lab. Med. 62, 1118–1125 (2024).
Google Scholar
Altamer, Y. Y. & Hadi, E. A. Age-dependent reference intervals of glucose, urea, protein, lactate and electrolytes in thermally-induced sweat. Eur. J. Clin. Chem. Clin 32, 71–77 (1994).
Google Scholar
Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).
Google Scholar
Kim, H. S. et al. Hand-held Raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal. Chem. 93, 14996–15004 (2021).
Google Scholar
Kalasin, S., Sangnuang, P. & Surareungchai, W. Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7, 322–334 (2021).
Google Scholar
Kalasin, S. & Sangnuang, P. Multiplex wearable electrochemical sensors fabricated from sodiated polymers and mxene nanosheet to measure sodium and creatinine levels in sweat. ACS Appl. Nano Mater. 6, 18209–18221 (2023).
Google Scholar
Rakesh Kumar, R. K., Shaikh, M. O. & Chuang, C. H. A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal. Chim. Acta 1183, 338748 (2021).
Google Scholar
Hussain, S. & Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films integrated into PDMS chips. Acs Sens. 5, 3988–3998 (2020).
Google Scholar
Promphet, N. et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B: Chem. 321, 128549 (2020).
Google Scholar
Singh, S., Sharma, M. & Singh, G. Recent advancements in urea biosensors for biomedical applications. IET Nanobiotechnol. 15, 358–379 (2021).
Google Scholar
Ibáñez-Redín, G. et al. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 223, 114994 (2023).
Google Scholar
Liu, Y. L. et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem. 90, 13081–13087 (2018).
Google Scholar
Xu, Z. Y. et al. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B: Chem. 348, 130674 (2021).
Google Scholar
Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).
Google Scholar
Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).
Google Scholar
Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab. Chip 19, 3179–3189 (2019).
Google Scholar
Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).
Google Scholar
Alizadeh, A. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab. Chip 18, 2632–2641 (2018).
Google Scholar
Parrilla, M. et al. Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal. Chem. 91, 8644–8651 (2019).
Google Scholar
Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).
Google Scholar
Xu, N. et al. Microneedle-based technology: toward minimally invasive disease diagnostics. Adv. Mater. Technol-Us 7, 2101595 (2022).
Google Scholar
Zheng, H. et al. Reverse iontophoresis with the development of flexible electronics: a review. Biosens. Bioelectron. 223, 115036 (2023).
Google Scholar
Metry, G. S., Attman, P. O., Lonnroth, P., Beshara, S. N. & Aurell, M. Urea kinetics during hemodialysis measured by microdialysis-a novel technique. Kidney Int. 44, 622–629 (1993).
Google Scholar
Wascotte, V. et al. Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur. J. Pharm. Biopharm. 69, 1077–1082 (2008).
Google Scholar
Ebah, L. M. et al. Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool? Eur. J. Clin. Invest. 42, 840–847 (2012).
Google Scholar
Varadharaj, E. K. & Jampana, N. Non-invasive potentiometric sensor for measurement of blood urea in human subjects using reverse iontophoresis. J. Electrochem. Soc. 163, B340 (2016).
Google Scholar
Zheng, L., Zhu, D., Xiao, Y., Zheng, X. & Chen, P. Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens. Bioelectron. 237, 115506 (2023).
Google Scholar
Dervisevic, M., Jara Fornerod, M. J., Harberts, J., Zangabad, P. S. & Voelcker, N. H. Wearable microneedle patch for transdermal electrochemical monitoring of urea in interstitial fluid. ACS Sens. 9, 932–941 (2024).
Google Scholar
Miller, P. R. et al. Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+). Adv. Healthc. Mater. 3, 876–881 (2014).
Google Scholar
Parrilla, M. et al. Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91, 1578–1586 (2019).
Google Scholar
Shukla, S., Machekposhti, S. A., Joshi, N., Joshi, P. & Narayan, R. J. Microneedle-integrated device for transdermal sampling and analyses of targeted biomarkers. Small Sci. 3, 2200087 (2023).
Google Scholar
Huang, X. S. et al. 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023).
Google Scholar
Molinero-Fernández, A., Casanova, A., Wang, Q. Y., Cuartero, M. & Crespo, G. A. In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sensors 8, 158–166 (2022).
Google Scholar
Li, H. et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6, 2181–2190 (2021).
Google Scholar
Zhu, D. D. et al. Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces (2023).
Zheng, Y. B. et al. A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34, e2108607 (2022).
Google Scholar
Li, M. S. et al. Current and future perspectives on microfluidic tear analytic devices. ACS Sens. 7, 1300–1314 (2022).
Google Scholar
Giardini, A. & Roberts, J. R. Concentration of glucose and total chloride in tears. Br. J. Ophthalmol. 34, 737–743 (1950).
Google Scholar
Kang, J., Fulop, G. & Friedman, A. H. Tear urea nitrogen and creatinine levels in renal patients. Acta Ophthalmol. 66, 407–412 (1988).
Google Scholar
Thomas, N., Lähdesmäki, I. & Parviz, B. A. A contact lens with an integrated lactate sensor. Sens. Actuators B: Chem. 162, 128–134 (2012).
Google Scholar
Liu, H., Yan, X., Gu, Z., Xiu, G. & Xiao, X. Electrochemical sensing in contact lenses. Electroanalysis 34, 227–236 (2021).
Google Scholar
Yang, X. et al. Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. J. Mater. Sci. 55, 9551–9561 (2020).
Google Scholar
Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal. Biochem. 608, 113902 (2020).
Google Scholar
Moreddu, R. et al. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab. Chip 20, 3970–3979 (2020).
Google Scholar
Moreddu, R. et al. Lab-on-a-contact lens platforms fabricated by multi-axis femtosecond laser ablation. Small 17, e2102008 (2021).
Google Scholar
Mukundan, G. & Badhulika, S. Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples. Mikrochim. Acta 191, 252 (2024).
Google Scholar
Lakowicz, J. R., Badugu, R., Sivashanmugan, K. & Reece, A. Remote measurements of tear electrolyte concentrations on both sides of an inserted contact lens. Chemosensors 11, 463 (2023).
Google Scholar
Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).
Google Scholar
Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Sodium-sensitive contact lens for diagnostics of ocular pathologies. Sens. Actuators B Chem. 331, 129434 (2021).
Google Scholar
Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).
Google Scholar
Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).
Google Scholar
Sempionatto, J. R. et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 137, 161–170 (2019).
Google Scholar
Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).
Google Scholar
Xu, J., Tao, X., Liu, X. & Yang, L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. Anal. Chem. 94, 8659–8667 (2022).
Google Scholar
Tiffany, T. O., Jansen, J. M., Burtis, C. A., Overton, J. B. & Scott, C. D. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer. Clin. Chem. 18, 829–840 (1972).
Google Scholar
Jaffé, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Biol. Chem. 10, 391–400 (1886).
Google Scholar
Jung, D., Biggs, H., Erikson, J. & Ledyard, P. U. New colorimetric reaction for end-point, continuous-flow, and kinetic measurement of urea. Clin. Chem. 21, 1136–1140 (1975).
Google Scholar
Yetisen, A. K. et al. Scleral lens sensor for ocular electrolyte analysis. Adv. Mater. 32, e1906762 (2020).
Google Scholar
Moonla, C. et al. Lab-in-a-mouth and advanced point-of-care sensing systems: detecting bioinformation from the oral cavity and saliva. ECS Sens. Plus 1, 021603 (2022).
Google Scholar
Swetha, P., Balijapalli, U. & Feng, S.-P. Wireless accessing of salivary biomarkers based wearable electrochemical sensors: a mini-review. Electrochem. Commun. 140, 107314 (2022).
Google Scholar
Haji Mohammadi, M. et al. Saliva lab-on-a-chip biosensors: recent novel ideas and applications in disease detection. Microchem. J. 168, 106506 (2021).
Google Scholar
Lee, Y. et al. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl Acad. Sci. USA 115, 5377–5382 (2018).
Google Scholar
Kim, J. et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014).
Google Scholar
Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).
Google Scholar
Lim, H. R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).
Google Scholar
Temilola, D. O. et al. Salivary creatinine as a diagnostic tool for evaluating patients with chronic kidney disease. BMC Nephrol. 20, 387 (2019).
Google Scholar
Bilancio, G. et al. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol. 20, 242 (2019).
Google Scholar
Soni, A., Surana, R. K. & Jha, S. K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B: Chem. 269, 346–353 (2018).
Google Scholar
Labat, C. et al. Differential associations for salivary sodium, potassium, calcium, and phosphate levels with carotid intima media thickness, heart rate, and arterial stiffness. Dis. Markers 2018, 3152146 (2018).
Google Scholar
Kallapur, B. et al. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study. J. Nat. Sci. Biol. Med. 4, 341–345 (2013).
Google Scholar
Holden, B. A., Sweeney, D. F., Vannas, A., Nilsson, K. T. & Efron, N. Effects of long-term extended contact lens wear on the human cornea. Invest. Ophthalmol. Vis. Sci. 26, 1489–1501 (1985).
Google Scholar
Ghaffari, R., Rogers, J. A. & Ray, T. R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens. Actuators B Chem. 332, 129447 (2021).
Google Scholar
Cho, S. et al. A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise. Sci. Transl. Med. 16, eado5366 (2024).
Google Scholar
Zargartalebi, H. et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science 386, 1146–1153 (2024).
Google Scholar
Thompson, I. A. P. et al. An antibody-based molecular switch for continuous small-molecule biosensing. Sci. Adv. 9, eadh4978 (2023).
Google Scholar
Hariri, A. A. et al. Modular aptamer switches for the continuous optical detection of small-molecule analytes in complex media. Adv. Mater. 36, e2304410 (2024).
Google Scholar
Poudineh, M. et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5, 53–63 (2021).
Google Scholar
Pinto, M. & Dobson, S. BK and JC virus: a review. J. Infect. 68, S2–S8 (2014).
Google Scholar
Reploeg, M. D., Storch, G. A. & Clifford, D. B. Bk virus: a clinical review. Clin. Infect. Dis. 33, 191–202 (2001).
Google Scholar
Lo, D. J., Kaplan, B. & Kirk, A. D. Biomarkers for kidney transplant rejection. Nat. Rev. Nephrol. 10, 215–225 (2014).
Google Scholar
Shi, C. et al. Application of a sub-0.1-mm(3) implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).
Google Scholar
Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).
Google Scholar
Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater. 34, e2201129 (2022).
Google Scholar
Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, e2202980 (2022).
Google Scholar
Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).
Google Scholar
Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).
Google Scholar
Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).
Google Scholar
Humar, A. & Matas, A. J. Surgical complications after kidney transplantation. Semin. Dial. 18, 505–510 (2005).
Google Scholar
Salvadori, M., Rosso, G. & Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J. Transpl. 5, 52–67 (2015).
Google Scholar
Park, J., Seok, H. S., Kim, S. S. & Shin, H. Photoplethysmogram analysis and applications: an integrative review. Front. Physiol. 12, 808451 (2021).
Google Scholar
Traverso, G. et al. First-in-human trial of an ingestible vitals-monitoring pill. Device 1, 100125 (2023).
Google Scholar
Srinivasan, S. S. et al. A vibrating ingestible bioelectronic stimulator modulates gastric stretch receptors for illusory satiety. Sci. Adv. 9, eadj3003 (2023).
Google Scholar
Ouyang, W. et al. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups. Neuron 112, 1764–1777.e1765 (2024).
Google Scholar
Lee, K. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4, 148–158 (2020).
Google Scholar
Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).
Google Scholar
Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).
Google Scholar
Kang, S. K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).
Google Scholar
Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).
Google Scholar
Lu, D. et al. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 206, 114145 (2022).
Google Scholar
Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).
Google Scholar
Madhvapathy, S. R. et al. Advanced thermal sensing techniques for characterizing the physical properties of skin. Appl. Phys. Rev. 9, 041307 (2022).
Google Scholar
Crawford, K. E. et al. Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mech. Lett. 22, 27–35 (2018).
Google Scholar
Madhvapathy, S. R. et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8, 1040–1052 (2024).
Google Scholar
Pizarro, T. T. et al. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 17, 2566–2584 (2011).
Google Scholar
Clayton, P. A., McDonald, S. P., Russ, G. R. & Chadban, S. J. Long-term outcomes after acute rejection in kidney transplant recipients: an ANZDATA analysis. J. Am. Soc. Nephrol. 30, 1697–1707 (2019).
Google Scholar
Singh, N., Pirsch, J. & Samaniego, M. Antibody-mediated rejection: treatment alternatives and outcomes. Transpl. Rev. 23, 34–46 (2009).
Google Scholar
Levitsky, J. et al. Acute rejection increases risk of graft failure and death in recent liver transplant recipients. Clin. Gastroenterol. Hepatol. 15, 584–593.e582 (2017).
Google Scholar
Hopkins, P. M. et al. Prospective analysis of 1,235 transbronchial lung biopsies in lung transplant recipients. J. Heart Lung Transpl. 21, 1062–1067 (2002).
Google Scholar
Han, Z. et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 14, 3407 (2023).
Google Scholar
He, X. & Bischof, J. C. Analysis of thermal stress in cryosurgery of kidneys. J. Biomech. Eng. 127, 656–661 (2005).
Google Scholar
Natesan, H. et al. A micro-thermal sensor for focal therapy applications. Sci. Rep. 6, 21395 (2016).
Google Scholar
Sharma, A. et al. Vitrification and nanowarming of kidneys. Adv. Sci. 8, e2101691 (2021).
Google Scholar
O’Brien, T. J. et al. The development of a thin-filmed noninvasive tissue perfusion sensor to quantify capillary pressure occlusion of explanted organs. IEEE Trans. Biomed. Eng. 64, 1631–1637 (2017).
Google Scholar
Liapis, H. et al. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am. J. Transpl. 17, 140–150 (2017).
Google Scholar
van Stralen, K. J. et al. Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75, 1257–1263 (2009).
Google Scholar
Hall, I. E., Doshi, M. D., Poggio, E. D. & Parikh, C. R. A comparison of alternative serum biomarkers with creatinine for predicting allograft function after kidney transplantation. Transplantation 91, 48–56 (2011).
Google Scholar
Barone, D. G. et al. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proc. Natl Acad. Sci. USA 119, e2115857119 (2022).
Google Scholar
Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).
Google Scholar
Kaasch, A. J. et al. Effect of clinically uninfected orthopedic implants and pacemakers/AICDs in low-risk staphylococcus aureus bloodstream infection on crude mortality rate: a post hoc analysis of a large cohort study. Open. Forum Infect. Dis. 6, ofz170 (2019).
Google Scholar
Jensen, M. J. et al. Cochlear implant material effects on inflammatory cell function and foreign body response. Hear. Res. 426, 108597 (2022).
Google Scholar
Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).
Google Scholar
Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).
Google Scholar
Ciatti, J. L. et al. An autonomous implantable device for the prevention of death from opioid overdose. Sci. Adv. 10, eadr3567 (2024).
Google Scholar
Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).
Google Scholar
Liu, H. C. et al. Wearable bioadhesive ultrasound shear wave elastography. Sci. Adv. 10, eadk8426 (2024).
Google Scholar
Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).
Google Scholar
Mason, P. Blood tests used to investigate liver, thyroid or kidney function and disease. Pharm. J. 272, 446–448 (2004).
Kayashima, S. et al. Suction effusion fluid from skin and constituent analysis: new candidate for interstitial fluid. Am. J. Physiol. 263, H1623–H1627 (1992).
Google Scholar
Pandya, D., Nagrajappa, A. K. & Ravi, K. S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension- a research study. J. Clin. Diagn. Res. 10, ZC58–ZC62 (2016).
Google Scholar
Ebah, L., Brenchley, P., Coupes, B. & Mitra, S. A modified in vivo flow variation technique of microdialysis for sampling uremic toxins in the subcutaneous interstitial compartment. Blood Purif. 32, 96–103 (2011).
Google Scholar
Mendelsohn, M., Abramson, D., Senft, S., Servodidio, C. & Gamache, P. Uric acid in the aqueous humor and tears of retinoblastoma patients. J. AAPOS 2, 369–371 (1998).
Google Scholar
Asadi, M., Nadhum Bahjat, M. & Hosseini, M. A review on wearable sensors for sodium detection in human sweat. Anal. Bioanal. Electrochem. 15, 794–814 (2023).
Google Scholar
Madden, J., O’Mahony, C., Thompson, M., O’Riordan, A. & Galvin, P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sens. Biosens. Res. 29, 100348 (2020).
Van Haeringen, N. J. Clinical biochemistry of tears. Surv. Ophthalmol. 26, 84–96 (1981).
Google Scholar
Ray, T. R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).
Google Scholar
Gonçalves, A. C. et al. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis. J. Pediatr. 95, 443–450 (2019).
Google Scholar
Senel, M., Dervisevic, M. & Voelcker, N. H. Gold microneedles fabricated by casting of gold ink used for urea sensing. Mater. Lett. 243, 50–53 (2019).
Google Scholar
Chen, Y. J. et al. Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic. Biosens. Bioelectron. 208, 114234 (2022).
Google Scholar
link