Implantable bioelectronics and wearable sensors for kidney health and disease

0
Implantable bioelectronics and wearable sensors for kidney health and disease
  • Francis, A. et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat. Rev. Nephrol. 20, 473–485 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Primers 7, 52 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Tucker, E. L. et al. Life and expectations post-kidney transplant: a qualitative analysis of patient responses. BMC Nephrol. 20, 175 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delanaye, P., Cavalier, E. & Pottel, H. Serum creatinine: not so simple! Nephron 136, 302–308 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ostermann, M. et al. Biomarkers in acute kidney injury. Ann. Intensive Care 14, 145 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seki, M. et al. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC Nephrol. 20, 1–10 (2019).

    Article 

    Google Scholar 

  • Sharma, S. & Smyth, B. From proteinuria to fibrosis: an update on pathophysiology and treatment options. Kidney Blood Press. Res. 46, 411–420 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrero, J. J. et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 91, 244–251 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Menon, M. C., Murphy, B. & Heeger, P. S. Moving biomarkers toward clinical implementation in kidney transplantation. J. Am. Soc. Nephrol. 28, 735–747 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bloom, R. D. & Augustine, J. J. Beyond the biopsy: monitoring immune status in kidney recipients. Clin. J. Am. Soc. Nephrol. 16, 1413–1422 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Bandar, N. et al. Kidney perfusion in contrast-enhanced ultrasound (CEUS) correlates with renal function in living kidney donors. J. Clin. Med. 11, 791 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singla, R. K., Kadatz, M., Rohling, R. & Nguan, C. Kidney ultrasound for nephrologists: a review. Kidney Med. 4, 100464 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thurman, J. & Gueler, F. Recent advances in renal imaging. F1000Res 7, F1000 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, S. T., Selby, N. M. & Taal, M. W. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: moving toward clinical application. Am. J. Kidney Dis. 82, 491–504 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hull, K. L., Adenwalla, S. F., Topham, P. & Graham-Brown, M. P. Indications and considerations for kidney biopsy: an overview of clinical considerations for the non-specialist. Clin. Med. 22, 34–40 (2022).

    Article 

    Google Scholar 

  • Schnuelle, P. Renal biopsy for diagnosis in kidney disease: indication, technique, and safety. J. Clin. Med. 12, 6424 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poggio, E. D. et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin. J. Am. Soc. Nephrol. 15, 1595–1602 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bufkin, K. B., Karim, Z. A. & Silva, J. Review of the limitations of current biomarkers in acute kidney injury clinical practices. SAGE Open. Med. 12, 20503121241228446 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article 
    CAS 

    Google Scholar 

  • Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kukkar, D., Zhang, D., Jeon, B. H. & Kim, K.-H. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: performance evaluation and future challenges. TrAC. Trends Anal. Chem. 150, 116570 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tricoli, A. & Neri, G. Miniaturized bio-and chemical-sensors for point-of-care monitoring of chronic kidney diseases. Sensors 18, 942 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss, C., Booke, H., Forni, L. & Zarbock, A. Biomarkers of acute kidney injury: from discovery to the future of clinical practice. J. Clin. Anesth. 95, 111458 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhondup, T. & Qian, Q. Acid-base and electrolyte disorders in patients with and without chronic kidney disease: an update. Kidney Dis. 3, 136–148 (2017).

    Article 

    Google Scholar 

  • Tesch, G. H. Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology 15, 609–616 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gowda, S. et al. Markers of renal function tests. N. Am. J. Med. Sci. 2, 170–173 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab. Chip 19, 1545–1555 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S. B. et al. Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition. Small 14, e1802876 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article 

    Google Scholar 

  • Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • al-Tamer, Y. Y., Hadi, E. A. & al-Baldrani, I. I.Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol. Res. 25, 337–340 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. R. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adelaars, S. et al. The correlation of urea and creatinine concentrations in sweat and saliva with plasma during hemodialysis: an observational cohort study. Clin. Chem. Lab. Med. 62, 1118–1125 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Altamer, Y. Y. & Hadi, E. A. Age-dependent reference intervals of glucose, urea, protein, lactate and electrolytes in thermally-induced sweat. Eur. J. Clin. Chem. Clin 32, 71–77 (1994).

    CAS 

    Google Scholar 

  • Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article 

    Google Scholar 

  • Kim, H. S. et al. Hand-held Raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal. Chem. 93, 14996–15004 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalasin, S., Sangnuang, P. & Surareungchai, W. Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7, 322–334 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalasin, S. & Sangnuang, P. Multiplex wearable electrochemical sensors fabricated from sodiated polymers and mxene nanosheet to measure sodium and creatinine levels in sweat. ACS Appl. Nano Mater. 6, 18209–18221 (2023).

    Article 
    CAS 

    Google Scholar 

  • Rakesh Kumar, R. K., Shaikh, M. O. & Chuang, C. H. A review of recent advances in non-enzymatic electrochemical creatinine biosensing. Anal. Chim. Acta 1183, 338748 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hussain, S. & Park, S. Y. Sweat-based noninvasive skin-patchable urea biosensors with photonic interpenetrating polymer network films integrated into PDMS chips. Acs Sens. 5, 3988–3998 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Promphet, N. et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B: Chem. 321, 128549 (2020).

    Article 
    CAS 

    Google Scholar 

  • Singh, S., Sharma, M. & Singh, G. Recent advancements in urea biosensors for biomedical applications. IET Nanobiotechnol. 15, 358–379 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibáñez-Redín, G. et al. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 223, 114994 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liu, Y. L. et al. Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat. Anal. Chem. 90, 13081–13087 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Z. Y. et al. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B: Chem. 348, 130674 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab. Chip 19, 3179–3189 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alizadeh, A. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab. Chip 18, 2632–2641 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parrilla, M. et al. Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal. Chem. 91, 8644–8651 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xu, N. et al. Microneedle-based technology: toward minimally invasive disease diagnostics. Adv. Mater. Technol-Us 7, 2101595 (2022).

    Article 

    Google Scholar 

  • Zheng, H. et al. Reverse iontophoresis with the development of flexible electronics: a review. Biosens. Bioelectron. 223, 115036 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Metry, G. S., Attman, P. O., Lonnroth, P., Beshara, S. N. & Aurell, M. Urea kinetics during hemodialysis measured by microdialysis-a novel technique. Kidney Int. 44, 622–629 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wascotte, V. et al. Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur. J. Pharm. Biopharm. 69, 1077–1082 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebah, L. M. et al. Reverse iontophoresis of urea in health and chronic kidney disease: a potential diagnostic and monitoring tool? Eur. J. Clin. Invest. 42, 840–847 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varadharaj, E. K. & Jampana, N. Non-invasive potentiometric sensor for measurement of blood urea in human subjects using reverse iontophoresis. J. Electrochem. Soc. 163, B340 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zheng, L., Zhu, D., Xiao, Y., Zheng, X. & Chen, P. Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens. Bioelectron. 237, 115506 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dervisevic, M., Jara Fornerod, M. J., Harberts, J., Zangabad, P. S. & Voelcker, N. H. Wearable microneedle patch for transdermal electrochemical monitoring of urea in interstitial fluid. ACS Sens. 9, 932–941 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, P. R. et al. Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+). Adv. Healthc. Mater. 3, 876–881 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parrilla, M. et al. Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91, 1578–1586 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shukla, S., Machekposhti, S. A., Joshi, N., Joshi, P. & Narayan, R. J. Microneedle-integrated device for transdermal sampling and analyses of targeted biomarkers. Small Sci. 3, 2200087 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, X. S. et al. 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molinero-Fernández, A., Casanova, A., Wang, Q. Y., Cuartero, M. & Crespo, G. A. In vivo transdermal multi-ion monitoring with a potentiometric microneedle-based sensor patch. ACS Sensors 8, 158–166 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6, 2181–2190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, D. D. et al. Microneedle-coupled epidermal sensors for in-situ-multiplexed ion detection in interstitial fluids. ACS Appl. Mater. Interfaces (2023).

  • Zheng, Y. B. et al. A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34, e2108607 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, M. S. et al. Current and future perspectives on microfluidic tear analytic devices. ACS Sens. 7, 1300–1314 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giardini, A. & Roberts, J. R. Concentration of glucose and total chloride in tears. Br. J. Ophthalmol. 34, 737–743 (1950).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, J., Fulop, G. & Friedman, A. H. Tear urea nitrogen and creatinine levels in renal patients. Acta Ophthalmol. 66, 407–412 (1988).

    Article 
    CAS 

    Google Scholar 

  • Thomas, N., Lähdesmäki, I. & Parviz, B. A. A contact lens with an integrated lactate sensor. Sens. Actuators B: Chem. 162, 128–134 (2012).

    Article 
    CAS 

    Google Scholar 

  • Liu, H., Yan, X., Gu, Z., Xiu, G. & Xiao, X. Electrochemical sensing in contact lenses. Electroanalysis 34, 227–236 (2021).

    Article 

    Google Scholar 

  • Yang, X. et al. Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. J. Mater. Sci. 55, 9551–9561 (2020).

    Article 
    CAS 

    Google Scholar 

  • Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal. Biochem. 608, 113902 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreddu, R. et al. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab. Chip 20, 3970–3979 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreddu, R. et al. Lab-on-a-contact lens platforms fabricated by multi-axis femtosecond laser ablation. Small 17, e2102008 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mukundan, G. & Badhulika, S. Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples. Mikrochim. Acta 191, 252 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lakowicz, J. R., Badugu, R., Sivashanmugan, K. & Reece, A. Remote measurements of tear electrolyte concentrations on both sides of an inserted contact lens. Chemosensors 11, 463 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badugu, R., Szmacinski, H., Reece, E. A., Jeng, B. H. & Lakowicz, J. R. Sodium-sensitive contact lens for diagnostics of ocular pathologies. Sens. Actuators B Chem. 331, 129434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sempionatto, J. R. et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 137, 161–170 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalasin, S., Sangnuang, P. & Surareungchai, W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 93, 10661–10671 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, J., Tao, X., Liu, X. & Yang, L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. Anal. Chem. 94, 8659–8667 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tiffany, T. O., Jansen, J. M., Burtis, C. A., Overton, J. B. & Scott, C. D. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer. Clin. Chem. 18, 829–840 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaffé, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Biol. Chem. 10, 391–400 (1886).

    Article 

    Google Scholar 

  • Jung, D., Biggs, H., Erikson, J. & Ledyard, P. U. New colorimetric reaction for end-point, continuous-flow, and kinetic measurement of urea. Clin. Chem. 21, 1136–1140 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yetisen, A. K. et al. Scleral lens sensor for ocular electrolyte analysis. Adv. Mater. 32, e1906762 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Moonla, C. et al. Lab-in-a-mouth and advanced point-of-care sensing systems: detecting bioinformation from the oral cavity and saliva. ECS Sens. Plus 1, 021603 (2022).

    Article 
    CAS 

    Google Scholar 

  • Swetha, P., Balijapalli, U. & Feng, S.-P. Wireless accessing of salivary biomarkers based wearable electrochemical sensors: a mini-review. Electrochem. Commun. 140, 107314 (2022).

    Article 
    CAS 

    Google Scholar 

  • Haji Mohammadi, M. et al. Saliva lab-on-a-chip biosensors: recent novel ideas and applications in disease detection. Microchem. J. 168, 106506 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lee, Y. et al. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl Acad. Sci. USA 115, 5377–5382 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, H. R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Temilola, D. O. et al. Salivary creatinine as a diagnostic tool for evaluating patients with chronic kidney disease. BMC Nephrol. 20, 387 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bilancio, G. et al. Saliva for assessing creatinine, uric acid, and potassium in nephropathic patients. BMC Nephrol. 20, 242 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soni, A., Surana, R. K. & Jha, S. K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B: Chem. 269, 346–353 (2018).

    Article 
    CAS 

    Google Scholar 

  • Labat, C. et al. Differential associations for salivary sodium, potassium, calcium, and phosphate levels with carotid intima media thickness, heart rate, and arterial stiffness. Dis. Markers 2018, 3152146 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kallapur, B. et al. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: a novel study. J. Nat. Sci. Biol. Med. 4, 341–345 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holden, B. A., Sweeney, D. F., Vannas, A., Nilsson, K. T. & Efron, N. Effects of long-term extended contact lens wear on the human cornea. Invest. Ophthalmol. Vis. Sci. 26, 1489–1501 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Ghaffari, R., Rogers, J. A. & Ray, T. R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens. Actuators B Chem. 332, 129447 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, S. et al. A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise. Sci. Transl. Med. 16, eado5366 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zargartalebi, H. et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science 386, 1146–1153 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, I. A. P. et al. An antibody-based molecular switch for continuous small-molecule biosensing. Sci. Adv. 9, eadh4978 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hariri, A. A. et al. Modular aptamer switches for the continuous optical detection of small-molecule analytes in complex media. Adv. Mater. 36, e2304410 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Poudineh, M. et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5, 53–63 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pinto, M. & Dobson, S. BK and JC virus: a review. J. Infect. 68, S2–S8 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Reploeg, M. D., Storch, G. A. & Clifford, D. B. Bk virus: a clinical review. Clin. Infect. Dis. 33, 191–202 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lo, D. J., Kaplan, B. & Kirk, A. D. Biomarkers for kidney transplant rejection. Nat. Rev. Nephrol. 10, 215–225 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, C. et al. Application of a sub-0.1-mm(3) implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater. 34, e2201129 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, e2202980 (2022).

    Article 

    Google Scholar 

  • Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Humar, A. & Matas, A. J. Surgical complications after kidney transplantation. Semin. Dial. 18, 505–510 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Salvadori, M., Rosso, G. & Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J. Transpl. 5, 52–67 (2015).

    Article 

    Google Scholar 

  • Park, J., Seok, H. S., Kim, S. S. & Shin, H. Photoplethysmogram analysis and applications: an integrative review. Front. Physiol. 12, 808451 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Traverso, G. et al. First-in-human trial of an ingestible vitals-monitoring pill. Device 1, 100125 (2023).

    Article 

    Google Scholar 

  • Srinivasan, S. S. et al. A vibrating ingestible bioelectronic stimulator modulates gastric stretch receptors for illusory satiety. Sci. Adv. 9, eadj3003 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouyang, W. et al. An implantable device for wireless monitoring of diverse physio-behavioral characteristics in freely behaving small animals and interacting groups. Neuron 112, 1764–1777.e1765 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, K. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4, 148–158 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article 

    Google Scholar 

  • Kim, J. et al. A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery. Proc. Natl Acad. Sci. USA 121, e2400868121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, S. K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, D. et al. Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosens. Bioelectron. 206, 114145 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Madhvapathy, S. R. et al. Advanced thermal sensing techniques for characterizing the physical properties of skin. Appl. Phys. Rev. 9, 041307 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crawford, K. E. et al. Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mech. Lett. 22, 27–35 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madhvapathy, S. R. et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8, 1040–1052 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pizarro, T. T. et al. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 17, 2566–2584 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Clayton, P. A., McDonald, S. P., Russ, G. R. & Chadban, S. J. Long-term outcomes after acute rejection in kidney transplant recipients: an ANZDATA analysis. J. Am. Soc. Nephrol. 30, 1697–1707 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, N., Pirsch, J. & Samaniego, M. Antibody-mediated rejection: treatment alternatives and outcomes. Transpl. Rev. 23, 34–46 (2009).

    Article 

    Google Scholar 

  • Levitsky, J. et al. Acute rejection increases risk of graft failure and death in recent liver transplant recipients. Clin. Gastroenterol. Hepatol. 15, 584–593.e582 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hopkins, P. M. et al. Prospective analysis of 1,235 transbronchial lung biopsies in lung transplant recipients. J. Heart Lung Transpl. 21, 1062–1067 (2002).

    Article 

    Google Scholar 

  • Han, Z. et al. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 14, 3407 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, X. & Bischof, J. C. Analysis of thermal stress in cryosurgery of kidneys. J. Biomech. Eng. 127, 656–661 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Natesan, H. et al. A micro-thermal sensor for focal therapy applications. Sci. Rep. 6, 21395 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. et al. Vitrification and nanowarming of kidneys. Adv. Sci. 8, e2101691 (2021).

    Article 

    Google Scholar 

  • O’Brien, T. J. et al. The development of a thin-filmed noninvasive tissue perfusion sensor to quantify capillary pressure occlusion of explanted organs. IEEE Trans. Biomed. Eng. 64, 1631–1637 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Liapis, H. et al. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am. J. Transpl. 17, 140–150 (2017).

    Article 
    CAS 

    Google Scholar 

  • van Stralen, K. J. et al. Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75, 1257–1263 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hall, I. E., Doshi, M. D., Poggio, E. D. & Parikh, C. R. A comparison of alternative serum biomarkers with creatinine for predicting allograft function after kidney transplantation. Transplantation 91, 48–56 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barone, D. G. et al. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proc. Natl Acad. Sci. USA 119, e2115857119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaasch, A. J. et al. Effect of clinically uninfected orthopedic implants and pacemakers/AICDs in low-risk staphylococcus aureus bloodstream infection on crude mortality rate: a post hoc analysis of a large cohort study. Open. Forum Infect. Dis. 6, ofz170 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jensen, M. J. et al. Cochlear implant material effects on inflammatory cell function and foreign body response. Hear. Res. 426, 108597 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).

    Article 

    Google Scholar 

  • Ciatti, J. L. et al. An autonomous implantable device for the prevention of death from opioid overdose. Sci. Adv. 10, eadr3567 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liu, H. C. et al. Wearable bioadhesive ultrasound shear wave elastography. Sci. Adv. 10, eadk8426 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mason, P. Blood tests used to investigate liver, thyroid or kidney function and disease. Pharm. J. 272, 446–448 (2004).

    Google Scholar 

  • Kayashima, S. et al. Suction effusion fluid from skin and constituent analysis: new candidate for interstitial fluid. Am. J. Physiol. 263, H1623–H1627 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Pandya, D., Nagrajappa, A. K. & Ravi, K. S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension- a research study. J. Clin. Diagn. Res. 10, ZC58–ZC62 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebah, L., Brenchley, P., Coupes, B. & Mitra, S. A modified in vivo flow variation technique of microdialysis for sampling uremic toxins in the subcutaneous interstitial compartment. Blood Purif. 32, 96–103 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mendelsohn, M., Abramson, D., Senft, S., Servodidio, C. & Gamache, P. Uric acid in the aqueous humor and tears of retinoblastoma patients. J. AAPOS 2, 369–371 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asadi, M., Nadhum Bahjat, M. & Hosseini, M. A review on wearable sensors for sodium detection in human sweat. Anal. Bioanal. Electrochem. 15, 794–814 (2023).

    CAS 

    Google Scholar 

  • Madden, J., O’Mahony, C., Thompson, M., O’Riordan, A. & Galvin, P. Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sens. Biosens. Res. 29, 100348 (2020).

    Google Scholar 

  • Van Haeringen, N. J. Clinical biochemistry of tears. Surv. Ophthalmol. 26, 84–96 (1981).

    Article 
    PubMed 

    Google Scholar 

  • Ray, T. R. et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 13, eabd8109 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves, A. C. et al. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis. J. Pediatr. 95, 443–450 (2019).

    Article 

    Google Scholar 

  • Senel, M., Dervisevic, M. & Voelcker, N. H. Gold microneedles fabricated by casting of gold ink used for urea sensing. Mater. Lett. 243, 50–53 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, Y. J. et al. Microneedle patches integrated with lateral flow cassettes for blood-free chronic kidney disease point-of-care testing during a pandemic. Biosens. Bioelectron. 208, 114234 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *