Associations between skeletal muscle strength and chronic kidney disease in patients with MASLD

0
Associations between skeletal muscle strength and chronic kidney disease in patients with MASLD
  • Feng, G. et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 21, 46–56 (2024).

  • Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

  • Byrne, C. D. & Targher, G. MASLD, MAFLD, or NAFLD criteria: have we re-created the confusion and acrimony surrounding metabolic syndrome? Metab. Target Organ Damage 4, 10 (2024).

    Article 
    CAS 

    Google Scholar 

  • Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62, S47–S64 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wang, T. Y. et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 18, 259–268 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, X. D. et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol. Int. 17, 773–791 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Sun, D. Q. et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. Hepatobiliary Surg. Nutr. 12, 386–403 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, D. Q. et al. MAFLD and risk of CKD. Metabolism 115, 154433 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lonardo, A., Mantovani, A., Targher, G. & Baffy, G. Nonalcoholic fatty liver disease and chronic kidney disease: epidemiology, pathogenesis, and clinical and research implications. Int. J. Mol. Sci. 23, 13320 (2022).

  • Cruz-Jentoft, A. J. & Sayer, A. A. Sarcopenia. Lancet 393, 2636–2646 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Seo, D. H. et al. Effect of low skeletal muscle mass and sarcopenic obesity on chronic kidney disease in patients with type 2 diabetes. Obesity (Silver Spring) 30, 2034–2043 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lopez-Lopez, J. P. et al. The prediction of Metabolic Syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc. Diabetol. 20, 68 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, S., Moon, M. K., Kim, W. & Koo, B. K. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: a Korean nationwide survey. J. Cachexia Sarcopenia Muscle 11, 1232–1241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petermann-Rocha, F. et al. Associations of muscle mass and grip strength with severe NAFLD: a prospective study of 333,295 UK Biobank participants. J. Hepatol. 76, 1021–1029 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, L. J. et al. N-terminal propeptide of type 3 collagen-based sequential algorithm can identify high-risk steatohepatitis and fibrosis in MAFLD. Hepatol. Int. 17, 190–201 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ha, S., Wong, V. W., Zhang, X. & Yu, J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 74, 141–152 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Perazzo, H., Pacheco, A. G. & Griep, R. H. Changing from NAFLD through MAFLD to MASLD: Similar prevalence and risk factors in a large Brazilian cohort. J. Hepatol. 80, e72–e74 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Mey, R. et al. Handgrip strength and respiratory disease mortality: Longitudinal analyses from SHARE. Pulmonology 30, 445–451 (2022).

  • Charatcharoenwitthaya, P., Karaketklang, K. & Aekplakorn, W. Muscle strength, but not body mass index, is associated with mortality in patients with non-alcoholic fatty liver disease. J. Cachexia Sarcopenia Muscle 13, 2393–2404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, F. K. W. et al. The association of grip strength with health outcomes does not differ if grip strength is used in absolute or relative terms: a prospective cohort study. Age Ageing 48, 684–691 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Inker, L. A. & Titan, S. Measurement and estimation of GFR for use in clinical practice: Core Curriculum 2021. Am. J. Kidney Dis. 78, 736–749 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delgado, C., Powe, N. R., Chertow, G. M., Grimes, B. & Johansen, K. L. Muscle mass and serum creatinine concentration by race and ethnicity among hemodialysis patients. J. Am. Soc. Nephrol. 35, 66–73 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Peng, T. C. Role of Sarcopenia in nonalcoholic fatty liver disease: definition is crucially important. Hepatology 68, 788–789 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Cho, J., Johnson, B. D., Watt, K. D. & Kim, C. H. Greater muscular strength is associated with a lower risk of pulmonary dysfunction in individuals with non-alcoholic fatty liver disease. J. Clin. Med. 11 (2022).

  • Avin, K. G. & Moorthi, R. N. Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr. Osteoporos. Rep. 13, 173–179 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, P. et al. Association of handgrip strength and/or walking pace with incident chronic kidney disease: A UK biobank observational study. J. Cachexia Sarcopenia Muscle 14, 805–814 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. H., Mitch, W. E. & Price, S. R. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat. Rev. Nephrol. 18, 138–152 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hara, A. et al. Relationship between handgrip strength and albuminuria in community-dwelling elderly Japanese subjects: the Shika Study. Biomarkers 25, 587–593 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, C. et al. Causal associations of sarcopenia-related traits with cardiometabolic disease and Alzheimer’s disease and the mediating role of insulin resistance: a Mendelian randomization study. Aging Cell 22, e13923 (2023).

  • DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diab. Care 32, S157–S163 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhou, J. et al. Metabolic dysfunction-associated fatty liver disease increases risk of chronic kidney disease: a systematic review and meta-analysis. eGastroenterology 1, e100005 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musso, G. et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 11, e1001680 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Distefano, G. & Goodpaster, B. H. Effects of exercise and aging on skeletal muscle. Cold Spring Harb. Perspect. Med. 8 (2018).

  • Berzigotti, A., Saran, U. & Dufour, J. F. Physical activity and liver diseases. Hepatology 63, 1026–1040 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henry, A. et al. Vigorous physical activity provides protection against all-cause deaths among adults patients with nonalcoholic fatty liver disease (NAFLD). Aliment Pharm. Ther. 57, 709–722 (2023).

    Article 
    CAS 

    Google Scholar 

  • Noor, H., Reid, J. & Slee, A. Resistance exercise and nutritional interventions for augmenting sarcopenia outcomes in chronic kidney disease: a narrative review. J. Cachexia Sarcopenia Muscle 12, 1621–1640 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heiwe, S. & Jacobson, S. H. Exercise training in adults with CKD: a systematic review and meta-analysis. Am. J. Kidney Dis. 64, 383–393 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, X. L., Wang, T. Y., Targher, G., Byrne, C. D. & Zheng, M. H. Lifestyle interventions for non-obese patients both with, and at risk, of non-alcoholic fatty liver disease. Diab. Metab. J. 46, 391–401 (2022).

    Article 

    Google Scholar 

  • Li, T., Hu, Z., Qiao, L., Wu, Y. & Ye, T. Chronic kidney disease and cognitive performance: NHANES 2011-2014. BMC Geriatr. 24, 351 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cusick, M. M., Tisdale, R. L., Chertow, G. M., Owens, D. K. & Goldhaber-Fiebert, J. D. Population-wide screening for chronic kidney disease: a cost-effectiveness analysis. Ann. Intern. Med. 176, 788–797 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fyfe, J. J., Hamilton, D. L. & Daly, R. M. Minimal-dose resistance training for improving muscle mass, strength, and function: a narrative review of current evidence and practical considerations. Sports Med. 52, 463–479 (2022).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *