Treatment of chronic kidney disease in older populations

0
Treatment of chronic kidney disease in older populations
  • Ageing and health. The World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.

  • Understanding the dynamics of the aging process. National Institute on Aging (NIA). https://www.nia.nih.gov/about/aging-strategic-directions-research/understanding-dynamics-aging).

  • Epidemiology of kidney disease in the United States. US Renal Data System.

  • Merchant, A. A. & Ling, E. An approach to treating older adults with chronic kidney disease. CMAJ 195, E612–E618 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

  • Alfano, G. et al. Rethinking chronic kidney disease in the aging population. Life 12, 1724 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moist, L. M. et al. Canadian Organ Replacement Register (CORR): reflecting the past and embracing the future. Can. J. Kidney Health Dis. 1, 26 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pecoits-Filho, R. et al. Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int. Suppl. 10, e3–e9 (2020).

    Article 

    Google Scholar 

  • Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Thurlow, J. S. et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am. J. Nephrol. 52, 98–107 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313–320 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Denic, A., Glassock, R. J. & Rule, A. D. The kidney in normal aging: a comparison with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 17, 137–139 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Epstein, M. Aging and the kidney. J. Am. Soc. Nephrol. 7, 1106–1122 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. J. et al. The aging kidney. Kidney Int. 74, 710–720 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weinstein, J. R. & Anderson, S. The aging kidney: physiological changes. Adv. Chronic Kidney Dis. 17, 302–307 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 85, 677–685 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Denic, A., Glassock, R. J. & Rule, A. D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis. 23, 19–28 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nitta, K., Okada, K., Yanai, M. & Takahashi, S. Aging and chronic kidney disease. Kidney Blood Press. Res. 38, 109–120 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Satoh, M. et al. Mitochondrial damage-induced impairment of angiogenesis in the aging rat kidney. Lab. Invest. 91, 190–202 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, D. F. & Shock, N. W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. Clin. Invest. 29, 496–507 (1950).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poggio, E. D. et al. Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors. Kidney Int. 75, 1079–1087 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berg, U. B. Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol. Dial. Transpl. 21, 2577–2582 (2006).

    Article 
    CAS 

    Google Scholar 

  • Messerli, F. H. et al. Essential hypertension in the elderly: haemodynamics, intravascular volume, plasma renin activity, and circulating catecholamine levels. Lancet 2, 983–986 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luft, F. C., Grim, C. E., Fineberg, N. & Weinberger, M. C. Effects of volume expansion and contraction in normotensive whites, blacks, and subjects of different ages. Circulation 59, 643–650 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmitt, R. & Melk, A. Molecular mechanisms of renal aging. Kidney Int. 92, 569–579 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franzin, R. et al. Targeting premature renal aging: from molecular mechanisms of cellular senescence to senolytic trials. Front. Pharmacol. 12, 630419 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenz, E. C. et al. Frailty in CKD and transplantation. Kidney Int. Rep. 6, 2270–2280 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buta, B. J. et al. Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 26, 53–61 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–156, (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shlipak, M. G. et al. The presence of frailty in elderly persons with chronic renal insufficiency. Am. J. Kidney Dis. 43, 861–867 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ballew, S. H. et al. Frailty, kidney function, and polypharmacy: the atherosclerosis risk in communities (ARIC) study. Am. J. Kidney Dis. 69, 228–236 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Wilhelm-Leen, E. R., Hall, Y. N., M, K. T. & Chertow, G. M. Frailty and chronic kidney disease: the Third National Health and Nutrition Evaluation Survey. Am. J. Med. 122, 664–671.e662 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roshanravan, B. et al. A prospective study of frailty in nephrology-referred patients with CKD. Am. J. Kidney Dis. 60, 912–921 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty as a novel predictor of mortality and hospitalization in individuals of all ages undergoing hemodialysis. J. Am. Geriatr. Soc. 61, 896–901 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, N. M. et al. Frailty prevalence in younger end-stage kidney disease patients undergoing dialysis and transplantation. Am. J. Nephrol. 51, 501–510 (2020).

    Article 
    PubMed 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Individual frailty components and mortality in kidney transplant recipients. Transplantation 101, 2126–2132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenger, U. et al. The relationship between preoperative creatinine clearance and outcomes for patients undergoing liver transplantation: a retrospective observational study. BMC Nephrol. 14, 37 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pugh, J. et al. Frailty and comorbidity are independent predictors of outcome in patients referred for pre-dialysis education. Clin. Kidney J. 9, 324–329 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty and cognitive function in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 10, 2181–2189 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty and falls among adult patients undergoing chronic hemodialysis: a prospective cohort study. BMC Nephrol. 14, 224 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty and health-related quality of life in end stage renal disease patients of all ages. J. Frailty Aging 5, 174–179 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. Y. et al. The prevalence, association, and clinical outcomes of frailty in maintenance dialysis patients. J. Ren. Nutr. 27, 106–112 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hickson, L. J. et al. Hospital readmission among new dialysis patients associated with young age and poor functional status. Nephron 139, 1–12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alfaadhel, T. A. et al. Frailty and mortality in dialysis: evaluation of a clinical frailty scale. Clin. J. Am. Soc. Nephrol. 10, 832–840 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johansen, K. L. et al. Association of performance-based and self-reported function-based definitions of frailty with mortality among patients receiving hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 626–632 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haugen, C. E. et al. Physical impairment and access to kidney transplantation. Transplantation 104, 367–373 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenz, E. C. et al. The relationship between frailty and decreased physical performance with death on the kidney transplant waiting list. Prog. Transpl. 29, 108–114 (2019).

    Article 

    Google Scholar 

  • Cheng, X. S. et al. Physical performance testing in kidney transplant candidates at the top of the waitlist. Am. J. Kidney Dis. 76, 815–825 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenz, E. C. et al. Relationship between pre-transplant physical function and outcomes after kidney transplant. Clin. Transplant 31, e12952 (2017).

    Article 

    Google Scholar 

  • Watford, D. J. et al. Toward telemedicine-compatible physical functioning assessments in kidney transplant candidates. Clin. Transpl. 35, e14173 (2021).

    Article 

    Google Scholar 

  • Garonzik-Wang, J. M. et al. Frailty and delayed graft function in kidney transplant recipients. Arch. Surg. 147, 190–193, (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kutner, N. G., Zhang, R., Bowles, T. & Painter, P. Pretransplant physical functioning and kidney patients’ risk for posttransplantation hospitalization/death: evidence from a national cohort. Clin. J. Am. Soc. Nephrol. 1, 837–843 (2006).

    Article 
    PubMed 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty, length of stay, and mortality in kidney transplant recipients: a National Registry and Prospective Cohort Study. Ann. Surg. 266, 1084–1090 (2017).

    Article 
    PubMed 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty and mortality in kidney transplant recipients. Am. J. Transpl. 15, 149–154 (2015).

    Article 
    CAS 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty and early hospital readmission after kidney transplantation. Am. J. Transpl. 13, 2091–2095 (2013).

    Article 
    CAS 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. Transplantation 99, 805–810 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reese, P. P. et al. Functional status and survival after kidney transplantation. Transplantation 97, 189–195 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vondracek, S. F., Teitelbaum, I. & Kiser, T. H. Principles of kidney pharmacotherapy for the nephrologist: core curriculum 2021. Am. J. Kidney Dis. 78, 442–458 (2021).

    Article 
    PubMed 

    Google Scholar 

  • KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 105, S117–S314 (2024).

  • Delanaye, P. et al. CKD: a call for an age-adapted definition. J. Am. Soc. Nephrol. 30, 1785–1805 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levey, A. S. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int. 80, 17–28 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hallan, S. I. et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308, 2349–2360 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wing, L. M. et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N. Engl. J. Med. 348, 583–592 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lithell, H. et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J. Hypertens. 21, 875–886 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Granger, C. B. et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 362, 772–776 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heagerty, A. M. & Mallion, J. M. Olmesartan medoxomil in elderly patients with essential or isolated systolic hypertension : efficacy and safety data from clinical trials. Drugs Aging 26, 61–76 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turgut, F., Balogun, R. A. & Abdel-Rahman, E. M. Renin-angiotensin-aldosterone system blockade effects on the kidney in the elderly: benefits and limitations. Clin. J. Am. Soc. Nephrol. 5, 1330–1339 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strippoli, G. F., Craig, M., Deeks, J. J., Schena, F. P. & Craig, J. C. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ 329, 828 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruggenenti, P., Perna, A. & Remuzzi, G. ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. Ramipril Efficacy in Nephropathy. J. Am. Soc. Nephrol. 12, 2832–2837 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hemmelgarn, B. R. et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 69, 2155–2161 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhandari, S. et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N. Engl. J. Med. 387, 2021–2032 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmed, A. K., Kamath, N. S., El Kossi, M. & El Nahas, A. M. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol. Dial. Transpl. 25, 3977–3982 (2010).

    Article 
    CAS 

    Google Scholar 

  • Fu, E. L. et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J. Am. Soc. Nephrol. 32, 424–435 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Samiy, A. H. Renal disease in the elderly. Med. Clin. North. Am. 67, 463–480 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chaumont, M. et al. Acute kidney injury in elderly patients with chronic kidney disease: do angiotensin-converting enzyme inhibitors carry a risk? J. Clin. Hypertens. 18, 514–521 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lapi, F., Azoulay, L., Yin, H., Nessim, S. J. & Suissa, S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ 346, e8525 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siew, E. D. et al. Renin-angiotensin aldosterone inhibitor use at hospital discharge among patients with moderate to severe acute kidney injury and its association with recurrent acute kidney injury and mortality. Kidney Int. 99, 1202–1212 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raebel, M. A. et al. Diabetes and drug-associated hyperkalemia: effect of potassium monitoring. J. Gen. Intern. Med. 25, 326–333 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanda, E. et al. Clinical impact of suboptimal RAASi therapy following an episode of hyperkalemia. BMC Nephrol. 24, 18 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2021. Diabetes Care 44, S111–S124 (2021).

  • Monteiro, P. et al. Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME® trial. Age Ageing 48, 859–866 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cahn, A. et al. Efficacy and safety of dapagliflozin in the elderly: analysis from the DECLARE-TIMI 58 study. Diabetes Care 43, 468–475 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giugliano, D. et al. Efficacy of SGLT-2 inhibitors in older adults with diabetes: systematic review with meta-analysis of cardiovascular outcome trials. Diabetes Res. Clin. Pract. 162, 108114 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vart, P. et al. Efficacy and safety of dapagliflozin in patients with chronic kidney disease across the spectrum of frailty. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad181 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Pratley, R. E. et al. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): secondary analyses from a randomised, double-blind trial. Lancet Healthy Longev. 4, e143–e154 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Yen, F. S. et al. Sodium-glucose cotransporter-2 inhibitors and the risk for dialysis and cardiovascular disease in patients with stage 5 chronic kidney disease. Ann. Intern. Med. (2024).

  • Takahashi, Y., Seino, Y. & Yabe, D. Long-term safety and efficacy of SGLT2 inhibitor use in older east Asians with type 2 diabetes. J. Diabetes Investig. 15, 63–66 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Op den Kamp, Y. J. M. et al. Effects of the SGLT2 inhibitor dapagliflozin on energy metabolism in patients with type 2 diabetes: a randomized, double-blind crossover trial. Diabetes Care 44, 1334–1343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamei, S. et al. Effect of tofogliflozin on body composition and glycemic control in Japanese subjects with type 2 diabetes mellitus. J. Diabetes Res. 2018, 6470137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S., Qi, Z., Wang, Y., Song, D. & Zhu, D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front. Endocrinol. 14, 1203666 (2023).

    Article 

    Google Scholar 

  • Yabe, D. et al. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: a randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes. Metab. 25, 3538–3548 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mone, P. et al. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care 45, 1247–1251 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marx, N., Husain, M., Lehrke, M., Verma, S. & Sattar, N. GLP-1 receptor agonists for the reduction of atherosclerotic cardiovascular risk in patients with type 2 diabetes. Circulation 146, 1882–1894 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. (2024).

  • Gilbert, M. P. et al. Effect of liraglutide on cardiovascular outcomes in elderly patients: a post hoc analysis of a randomized controlled trial. Ann. Intern. Med. 170, 423–426 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Leiter, L. A. et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc. Diabetol. 18, 73 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelhafiz, A. H. & Sinclair, A. J. Cardio-renal protection in older people with diabetes with frailty and medical comorbidities — a focus on the new hypoglycaemic therapy. J. Diabetes Complications 34, 107639 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Patorno, E. et al. Comparative effectiveness and safety of sodium-glucose cotransporter 2 inhibitors versus glucagon-like peptide 1 receptor agonists in older adults. Diabetes Care 44, 826–835 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kutz, A. et al. Comparative cardiovascular effectiveness and safety of SGLT-2 inhibitors, GLP-1 receptor agonists, and DPP-4 inhibitors according to frailty in type 2 diabetes. Diabetes Care 46, 2004–2014 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Simms-Williams, N. et al. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. BMJ 385, e078242 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bach, V., Schruckmayer, G., Sam, I., Kemmler, G. & Stauder, R. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 9, 1187–1196 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stauffer, M. E. & Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One 9, e84943 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Locatelli, F. et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transpl. 19, 121–132 (2004).

    Article 

    Google Scholar 

  • Hoshino, J. et al. Associations of hemoglobin levels with health-related quality of life, physical activity, and clinical outcomes in persons with stage 3-5 nondialysis CKD. J. Ren. Nutr. 30, 404–414 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ku, E. et al. Novel anemia therapies in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 104, 655–680 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Farag, Y. M. K. et al. Effect of anemia on physical function and physical activity in CKD: the National Health and Nutrition Examination Survey, 1999–2016. Kidney360 4, e1212–e1222 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haase, V. H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 11, 8–25 (2021).

    Article 

    Google Scholar 

  • Chappell, J. C., Payne, L. B. & Rathmell, W. K. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J. Clin. Invest. 129, 442–451 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benfante, R. & Reed, D. Is elevated serum cholesterol level a risk factor for coronary heart disease in the elderly? JAMA 263, 393–396 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839, (2007).

    Article 
    PubMed 

    Google Scholar 

  • Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vidt, D. G. et al. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am. J. Cardiol. 97, 1602–1606 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masnoon, N., Shakib, S., Kalisch-Ellett, L. & Caughey, G. E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 17, 230 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Onor, I. O. et al. Polypharmacy in chronic kidney disease: health outcomes & pharmacy-based strategies to mitigate inappropriate polypharmacy. Am. J. Med. Sci. 367, 4–13 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Gnjidic, D. et al. High-risk prescribing and incidence of frailty among older community-dwelling men. Clin. Pharmacol. Ther. 91, 521–528 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jamsen, K. M. et al. Effects of changes in number of medications and drug burden index exposure on transitions between frailty states and death: the concord health and ageing in men project cohort study. J. Am. Geriatr. Soc. 64, 89–95 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Saum, K. U. et al. Is polypharmacy associated with frailty in older people? Results from the ESTHER cohort study. J. Am. Geriatr. Soc. 65, e27–e32 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Trevisan, C. et al. Factors influencing transitions between frailty states in elderly adults: the Progetto Veneto Anziani Longitudinal Study. J. Am. Geriatr. Soc. 65, 179–184 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bonaga, B. et al. Frailty, polypharmacy, and health outcomes in older adults: the frailty and dependence in albacete study. J. Am. Med. Dir. Assoc. 19, 46–52 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moulis, F. et al. Searching for a polypharmacy threshold associated with frailty. J. Am. Med. Dir. Assoc. 16, 259–261 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Gnjidic, D. et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J. Clin. Epidemiol. 65, 989–995 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Scott, I. A. et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern. Med. 175, 827–834, (2015).

    Article 
    PubMed 

    Google Scholar 

  • McIntyre, C., McQuillan, R., Bell, C. & Battistella, M. Targeted deprescribing in an outpatient hemodialysis unit: a quality improvement study to decrease polypharmacy. Am. J. Kidney Dis. 70, 611–618 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Thomas, M. C. Diuretics, ACE inhibitors and NSAIDs — the triple whammy. Med. J. Aust. 172, 184–185 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dahmke, H. et al. Evaluation of triple whammy prescriptions after the implementation of a drug safety algorithm. Drugs Real. World Outcomes 11, 125–135 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seiberth, S., Berner, J., Hug, M. J. & Strobach, D. Double Whamm’ and ‘Triple Whamm’ combinations in hospitalized surgical patients — real life data from a tertiary teaching hospital. Pharmazie 77, 38–43 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Camin, R. M. et al. Acute kidney injury secondary to a combination of renin-angiotensin system inhibitors, diuretics and NSAIDS: “The Triple Whammy”. Nefrologia 35, 197–206 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Nochaiwong, S. et al. The association between proton pump inhibitor use and the risk of adverse kidney outcomes: a systematic review and meta-analysis. Nephrol. Dial. Transpl. 33, 331–342 (2018).

    Article 
    CAS 

    Google Scholar 

  • Geevasinga, N., Coleman, P. L., Webster, A. C. & Roger, S. D. Proton pump inhibitors and acute interstitial nephritis. Clin. Gastroenterol. Hepatol. 4, 597–604 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simpson, I. J. et al. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology 11, 381–385 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roshanravan, B. et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 24, 822–830 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doyle, E. M. et al. Association between kidney function, rehabilitation outcome, and survival in older patients discharged from inpatient rehabilitation. Am. J. Kidney Dis. 66, 768–774 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Heiwe, S. & Jacobson, S. H. Exercise training in adults with CKD: a systematic review and meta-analysis. Am. J. Kidney Dis. 64, 383–393 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Castaneda, C. et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann. Intern. Med. 135, 965–976 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castaneda, C. et al. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am. J. Kidney Dis. 43, 607–616 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Watson, E. L. et al. Progressive resistance exercise training in CKD: a feasibility study. Am. J. Kidney Dis. 66, 249–257 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Balakrishnan, V. S. et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 996–1002 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory, S. M. et al. Lack of circulating bioactive and immunoreactive IGF-I changes despite improved fitness in chronic kidney disease patients following 48 weeks of physical training. Growth Horm. IGF Res. 21, 51–56 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Headley, S. et al. Exercise training improves HR responses and V˙O2peak in predialysis kidney patients. Med. Sci. Sports Exerc. 44, 2392–2399 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Howden, E. J. et al. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin. J. Am. Soc. Nephrol. 8, 1494–1501 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howden, E. J. et al. Exercise training in CKD: efficacy, adherence, and safety. Am. J. Kidney Dis. 65, 583–591 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Greenwood, S. A. et al. Effect of exercise training on estimated GFR, vascular health, and cardiorespiratory fitness in patients with CKD: a pilot randomized controlled trial. Am. J. Kidney Dis. 65, 425–434 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Leehey, D. J. et al. Structured exercise in obese diabetic patients with chronic kidney disease: a randomized controlled trial. Am. J. Nephrol. 44, 54–62 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, I. R. et al. Association of walking with survival and RRT among patients with CKD stages 3–5. Clin. J. Am. Soc. Nephrol. 9, 1183–1189 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shlipak, M. G. et al. Effect of structured, moderate exercise on kidney function decline in sedentary older adults: an ancillary analysis of the LIFE study randomized clinical trial. JAMA Intern. Med. 182, 650–659, (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deutz, N. E. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin. Nutr. 33, 929–936 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, J. et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 14, 542–559 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Deer, R. R. & Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 18, 248–253 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klahr, S. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877–884 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levey, A. S. et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am. J. Kidney Dis. 27, 652–663 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, B., Su, X., Xu, B., Qiao, X. & Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: a systematic review and meta-analysis. PLoS One 13, e0206134 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, L. W. et al. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 83, 724–732 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koppe, L. & Fouque, D. The role for protein restriction in addition to renin-angiotensin-aldosterone system inhibitors in the management of CKD. Am. J. Kidney Dis. 73, 248–257 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Narasaki, Y., Rhee, C. M., Kramer, H. & Kalantar-Zadeh, K. Protein intake and renal function in older patients. Curr. Opin. Clin. Nutr. Metab. Care 24, 10–17 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. W. et al. Dietary protein intake, protein energy wasting, and the progression of chronic kidney disease: analysis from the KNOW-CKD study. Nutrients 11, 121 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, S. M., Paddon-Jones, D. & Layman, D. K. Optimizing adult protein intake during catabolic health conditions. Adv. Nutr. 11, S1058–s1069 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krok-Schoen, J. L., Archdeacon Price, A., Luo, M., Kelly, O. J. & Taylor, C. A. Low dietary protein intakes and associated dietary patterns and functional limitations in an aging population: a NHANES analysis. J. Nutr. Health Aging 23, 338–347 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Hare, A. M. et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 18, 2758–2765 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Obi, Y. et al. Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clin. J. Am. Soc. Nephrol. 5, 1558–1565 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koppe, L., Cassani de Oliveira, M. & Fouque, D. Ketoacid analogues supplementation in chronic kidney disease and future perspectives. Nutrients 11, 2071 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, A., Lee, H. Y. & Lin, Y. C. The effect of ketoanalogues on chronic kidney disease deterioration: a meta-analysis. Nutrients 11, 957 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. et al. Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Br. J. Nutr. 119, 22–29 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Iorio, B. R. et al. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol. Dial. Transpl. 33, 804–813 (2018).

    Article 

    Google Scholar 

  • Milovanova, L. et al. Effect of essential amino acid кetoanalogues and protein restriction diet on morphogenetic proteins (FGF-23 and Кlotho) in 3b-4 stages chronic кidney disease patients: a randomized pilot study. Clin. Exp. Nephrol. 22, 1351–1359 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways. J. Transl. Med. 17, 122 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garibotto, G. et al. Effects of low-protein, and supplemented very low-protein diets, on muscle protein turnover in patients with CKD. Kidney Int. Rep. 3, 701–710 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellizzi, V. et al. Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients with chronic kidney disease. BMC Nephrol. 19, 110 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brunori, G. et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am. J. Kidney Dis. 49, 569–580 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chewcharat, A. et al. The effects of restricted protein diet supplemented with ketoanalogue on renal function, blood pressure, nutritional status, and chronic kidney disease — mineral and bone disorder in chronic kidney disease patients: a systematic review and meta-analysis. J. Ren. Nutr. 30, 189–199 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stremke, E. R., Biruete, A. & Hill Gallant, K. M. Dietary protein intake and bone across stages of chronic kidney disease. Curr. Osteoporos. Rep. 18, 247–253 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamper, A. L. & Strandgaard, S. Long-term effects of high-protein diets on renal function. Annu. Rev. Nutr. 37, 347–369 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mafra, D. et al. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat. Rev. Nephrol. 17, 153–171 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mirmiran, P. et al. A prospective study of dietary meat intake and risk of incident chronic kidney disease. J. Ren. Nutr. 30, 111–118 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heo, G. Y. et al. Association of plant protein intake with risk of incident CKD: a UK Biobank Study. Am. J. Kidney Dis. 82, 687–697.e1 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • NIDDK, National Institutes of Health. 2023 USRDS annual data report: epidemiology of kidney disease in the United States. (2023).

  • Japanese Society for Dialysis Therapy. Current status of dialysis therapy in Japan [in Japanese]. (2022).

  • Sparke, C. et al. Estimating the total incidence of kidney failure in Australia including individuals who are not treated by dialysis or transplantation. Am. J. Kidney Dis. 61, 413–419 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Wakasugi, M. & Narita, I. Estimating the rate of withholding dialysis from elderly people aged ≥85 years in Japan (Japanese). Jpn. J. Nephrol. 61, 91–97 (2019).

    Google Scholar 

  • Wachterman, M. W. et al. End-of-life experience of older adults dying of end-stage renal disease: a comparison with cancer. J. Pain. Symptom Manag. 54, 789–797 (2017).

    Article 

    Google Scholar 

  • Abdel-Kader, K., Unruh, M. L. & Weisbord, S. D. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1057–1064 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaeffner, E. Smoothing transition to dialysis to improve early outcomes after dialysis initiation among old and frail adults — a narrative review. Nephrol. Dial. Transpl. 37, 2307–2313 (2022).

    Article 

    Google Scholar 

  • Hansen, M. S. et al. Psychosocial factors affecting patients with end-stage kidney disease and the impact of the social worker. J. Nephrol. 35, 43–58 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jassal, S. V., Chiu, E. & Hladunewich, M. Loss of independence in patients starting dialysis at 80 years of age or older. N. Engl. J. Med. 361, 1612–1613 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saran, R. et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73, A7–a8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, E., Germain, M. J., Cairns, H., Higginson, I. J. & Murtagh, F. E. International variation in classification of dialysis withdrawal: a systematic review. Nephrol. Dial. Transpl. 29, 625–635 (2014).

    Article 

    Google Scholar 

  • Buemi, M. et al. Dialysis and the elderly: an underestimated problem. Kidney Blood Press. Res. 31, 330–336 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kurella Tamura, M. Incidence, management, and outcomes of end-stage renal disease in the elderly. Curr. Opin. Nephrol. Hypertens. 18, 252–257 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Robinson, B. M. et al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney Int. 85, 158–165 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Saran, R. et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 71, A7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wachterman, M. W. et al. One-year mortality after dialysis initiation among older adults. JAMA Intern. Med. 179, 987–990, (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, S. P., Kreuter, W. & O’Hare, A. M. Treatment intensity at the end of life in older adults receiving long-term dialysis. Arch. Intern. Med. 172, 661–663 (2012). discussion 663–664.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thapa, S., Jardine, T., Davids, T., Caskey, F. J. & Davids, M. R. Incidence and 1-year survival of elderly South Africans starting kidney replacement therapy. Kidney Int. Rep. 7, 2071–2075 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • International Society of Nephrology. ISN-global kidney health atlas 2023. (2023).

  • Marrón, B., Remón, C., Pérez-Fontán, M., Quirós, P. & Ortíz, A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int. Suppl. 108, S42–S51 (2008).

    Article 

    Google Scholar 

  • Brown, E. A. et al. Burden of kidney disease, health-related quality of life, and employment among patients receiving peritoneal dialysis and in-center hemodialysis: findings from the DOPPS program. Am. J. Kidney Dis. 78, 489–500.e1 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Brown, E. A. et al. Broadening options for long-term dialysis in the elderly (BOLDE): differences in quality of life on peritoneal dialysis compared to haemodialysis for older patients. Nephrol. Dial. Transpl. 25, 3755–3763 (2010).

    Article 

    Google Scholar 

  • Iyasere, O. U. et al. Quality of life and physical function in older patients on dialysis: a comparison of assisted peritoneal dialysis with hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 423–430 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, S. A., Lamping, D. L., Brown, E. A. & Constantinovici, N. Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Perit. Dial. Int. 22, 463–470 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Iyasere, O. et al. Longitudinal trends in quality of life and physical function in frail older dialysis patients: a comparison of assisted peritoneal dialysis and in-center hemodialysis. Perit. Dial. Int. 39, 112–118 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Han, S. S. et al. Dialysis modality and mortality in the elderly: a meta-analysis. Clin. J. Am. Soc. Nephrol. 10, 983–993 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, L., Hu, N., Song, D. & Chen, Y. Mortality of peritoneal dialysis versus hemodialysis in older adults: an updated systematic review and meta-analysis. Gerontology 70, 461–478 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Heaf, J. et al. First-year mortality in incident dialysis patients: results of the Peridialysis study. BMC Nephrol. 23, 229 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etgen, T., Chonchol, M., Förstl, H. & Sander, D. Chronic kidney disease and cognitive impairment: a systematic review and meta-analysis. Am. J. Nephrol. 35, 474–482 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Foster, R. et al. Cognitive impairment in advanced chronic kidney disease: the Canadian frailty observation and interventions trial. Am. J. Nephrol. 44, 473–480 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lambie, M. et al. Starting and withdrawing haemodialysis-associations between nephrologists’ opinions, patient characteristics and practice patterns (data from the Dialysis Outcomes and Practice Patterns Study). Nephrol. Dial. Transpl. 21, 2814–2820 (2006).

    Article 

    Google Scholar 

  • Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sprick, J. D. et al. Cerebral blood flow regulation in end-stage kidney disease. Am. J. Physiol. Renal Physiol. 319, F782–F791 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolfgram, D. F., Szabo, A., Murray, A. M. & Whittle, J. Risk of dementia in peritoneal dialysis patients compared with hemodialysis patients. Perit. Dial. Int. 35, 189–198 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neumann, D., Mau, W., Wienke, A. & Girndt, M. Peritoneal dialysis is associated with better cognitive function than hemodialysis over a one-year course. Kidney Int. 93, 430–438 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tian, X. et al. The comparison of cognitive function and risk of dementia in CKD patients under peritoneal dialysis and hemodialysis: a PRISMA-compliant systematic review and meta-analysis. Medicine 98, e14390 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, H. et al. The effects of dialysis modality choice on cognitive functions in patients with end-stage renal failure: a systematic review and meta-analysis. Int. Urol. Nephrol. 53, 155–163 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kielstein, J. T. et al. ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke 37, 2024–2029 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Fleetwood, V. A., Caliskan, Y., Rub, F. A. A., Axelrod, D. & Lentine, K. L. Maximizing opportunities for kidney transplantation in older adults. Curr. Opin. Nephrol. Hypertens. 32, 204–211 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oniscu, G. C., Brown, H. & Forsythe, J. L. How great is the survival advantage of transplantation over dialysis in elderly patients? Nephrol. Dial. Transpl. 19, 945–951 (2004).

    Article 

    Google Scholar 

  • U.S. Organ Procurement and Transplantation Network: 2014 Annual Report of Department of Health and Human Services, Health Resources and Services Administration. (2014).

  • Serrano, O. K. et al. Age alone is not a contraindication to kidney donation: outcomes of donor nephrectomy in the elderly. Clin. Transpl. 32, e13287 (2018).

    Article 

    Google Scholar 

  • Bae, S. et al. Who can tolerate a marginal kidney? Predicting survival after deceased donor kidney transplant by donor-recipient combination. Am. J. Transpl. 19, 425–433 (2019).

    Article 

    Google Scholar 

  • McAdams-DeMarco, M. A. et al. Changes in frailty after kidney transplantation. J. Am. Geriatr. Soc. 63, 2152–2157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farrington, K. et al. Clinical practice guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR<45 mL/min/1.73 m2): a summary document from the European Renal Best Practice Group. Nephrol. Dial. Transpl. 32, 9–16 (2017).

    Article 

    Google Scholar 

  • Buur, L. E. et al. Does conservative kidney management offer a quantity or quality of life benefit compared to dialysis? A systematic review. BMC Nephrol. 22, 307 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Unit, O. K. A Guide to Conservative Kidney Management. Oxford Kidney Unit. (2018).

  • Davison, S. N. et al. Recommendations for the care of patients receiving conservative kidney management: focus on management of CKD and symptoms. Clin. J. Am. Soc. Nephrol. 14, 626–634 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, S. P. Y. et al. Long-term outcomes among patients with advanced kidney disease who forgo maintenance dialysis: a systematic review. JAMA Netw. Open. 5, e222255 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. K. & Kurella Tamura, M. Conservative care for kidney failure-the other side of the coin. JAMA Netw. Open. 5, e222252 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Murakami, N., Reich, A. J., Pavlakis, M. & Lakin, J. R. Conservative kidney management in kidney transplant populations. Semin. Nephrol. 43, 151401 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lai, C. F. et al. Withdrawal from long-term hemodialysis in patients with end-stage renal disease in Taiwan. J. Formos. Med. Assoc. 112, 589–599 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Japan Agency for Medical Research and Development (AMED) Longevity Science Research Project. Conservative Kidney Management (CKM) — concepts and practice for elderly patients with kidney failure. (2022).

  • Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jinagal, J. & Dhiman, P. Retraction: retinal hemorrhage from blunt ocular trauma. N. Engl. J. Med. 382, 490 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gurz, D. et al. The impact of virtual reality (VR) gaming and casual/social gaming on the quality of life, depression, and dialysis tolerance in patients with chronic kidney disease: a narrative review. Cureus 15, e44904 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *