The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis
Steinmetz, J. D. et al. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, 508–522 (2023).
Google Scholar
Hochberg, M. C., Cisternas, M. G. & Watkins-Castillo, S. I. United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS). Bone Jt. Initiative USA 4, 11–12 (2020).
Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 325, 568–578 (2021).
Google Scholar
O’Neill, T. W. & Felson, D. T. Mechanisms of Osteoarthritis (OA) Pain. Curr. Osteoporos. Rep. 16, 611–616 (2018).
Google Scholar
Gullo, T. R. et al. Defining multiple joint osteoarthritis, its frequency and impact in a community-based cohort. Semin Arthritis Rheum. 48, 950–957 (2019).
Google Scholar
Jin, Z. et al. Incidence trend of five common musculoskeletal disorders from 1990 to 2017 at the global, regional and national level: results from the global burden of disease study 2017. Ann. Rheum. Dis. 79, 1014–1022 (2020).
Google Scholar
Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
Google Scholar
Losina, E. et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 65, 703–711 (2013).
Google Scholar
Blasioli, D. J. & Kaplan, D. L. The roles of catabolic factors in the development of osteoarthritis. Tissue Eng. Part B Rev. 20, 355–363 (2014).
Google Scholar
Strandberg, T. E. & Tilvis, R. S. C-reactive protein, cardiovascular risk factors, and mortality in a prospective study in the elderly. Arterioscler Thromb. Vasc. Biol. 20, 1057–1060 (2000).
Google Scholar
Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y Acad. Sci. 908, 244–254 (2000).
Google Scholar
Metcalfe, A. et al. Abnormal loading of the major joints in knee osteoarthritis and the response to knee replacement. Gait Posture 37, 32–36 (2013).
Google Scholar
Ioan-Facsinay, A. & Kloppenburg, M. An emerging player in knee osteoarthritis: The infrapatellar fat pad. Arthritis Res. Ther. 15, 225 (2013).
Google Scholar
Favero, M. et al. Infrapatellar fat pad features in osteoarthritis: A histopathological and molecular study. Rheumatology 56, 1784–1793 (2017).
Google Scholar
Griffin, T. M. & Huffman, K. M. Editorial: Insulin Resistance: Releasing the Brakes on Synovial Inflammation and Osteoarthritis? Arthritis Rheumatol. 68, 1330–1333 (2016).
Google Scholar
Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).
Google Scholar
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).
Google Scholar
Aikawa, J. et al. Expression of calcitonin gene-related peptide in the infrapatellar fat pad in knee osteoarthritis patients. J. Orthop. Surg. Res. 12, 65 (2017).
Google Scholar
Fontanella, C. G. et al. Investigation of biomechanical response of Hoffa’s fat pad and comparative characterization. J. Mech. Behav. Biomed. Mater. 67, 1–9 (2017).
Google Scholar
Cai, J., Xu, J. & Wang, K. Association between infrapatellar fat pad volume and knee structural changes in patients with knee osteoarthritis. J. Rheumatol. 42, 1878–1884 (2015).
Google Scholar
Iwata, M. et al. Initial responses of articular tissues in a murine high-fat diet-induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain. PLoS One 12, 8 (2013).
Barboza, E. et al. Profibrotic Infrapatellar Fat Pad Remodeling Without M1 Macrophage Polarization Precedes Knee Osteoarthritis in Mice With Diet-Induced Obesity. Arthritis Rheumatol. 69, 1221–1232 (2017).
Google Scholar
Stocco, E. et al. Age-Dependent Remodeling in Infrapatellar Fat Pad Adipocytes and Extracellular Matrix: A Comparative Study. Front. Med. 8, 661403 (2021).
Google Scholar
Fu, Y., Huebner, J. L., Kraus, V. B. & Griffin, T. M. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 71, 1131–1140 (2016).
Google Scholar
Nishimuta, J. F., Bendernagel, M. F. & Levenston, M. E. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues. Connect Tissue Res. 58, 447–455 (2017).
Google Scholar
Kim, Y. M. & Joo, Y. B. Patellofemoral osteoarthritis. Knee Surg. Relat. Res. 24, 193–200 (2012).
Google Scholar
Cowan, S. M., Hart, H. F., Warden, S. J. & Crossley, K. M. Infrapatellar fat pad volume is greater in individuals with patellofemoral joint osteoarthritis and associated with pain. Rheumatol. Int. 35, 1439–1442 (2015).
Google Scholar
Harasymowicz, N. S. et al. Regional Differences Between Perisynovial and Infrapatellar Adipose Tissue Depots and Their Response to Class II and Class III Obesity in Patients With Osteoarthritis. Arthritis Rheumatol. 69, 1396–1406 (2017).
Google Scholar
Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 10, 316 (2014).
Fujisaka, S. et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009).
Google Scholar
McGillicuddy, F. C. et al. Long-term exposure to a high-fat diet results in the development of glucose intolerance and insulin resistance in interleukin-1 receptor I-deficient mice. Am. J. Physiol. Endocrinol. Metab. 305, e834–e844 (2013).
Google Scholar
Hepler, C. & Gupta, R. K. The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. Mol. Cell Endocrinol. 445, 95–108 (2017).
Google Scholar
Hemmeryckx, B., Hoylaerts, M. F. & Lijnen, H. R. Effect of premature aging on murine adipose tissue. Exp. Gerontol. 47, 256–262 (2012).
Google Scholar
Wu, D. et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J. Immunol. 179, 4829–4839 (2007).
Google Scholar
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).
Google Scholar
Price, J. S. et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65 (2002).
Google Scholar
Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. aging 1, 598–615 (2021).
Google Scholar
Bonfante, H. L. et al. CCL2, CXCL8, CXCL9 and CXCL10 serum levels increase with age but are not altered by treatment with hydroxychloroquine in patients with osteoarthritis of the knees. Int. J. Rheum. Dis. 20, 1958–1964 (2017).
Google Scholar
Schafer, M. J. et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5, e133668 (2020).
Google Scholar
Sohn, D. H. et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 14, R7 (2012).
Google Scholar
Scanzello, C. R., Plaas, A. & Crow, M. K. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr. Opin. Rheumatol. 20, 565–572 (2008).
Google Scholar
Borzì, R. M. et al. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum. 43, 1734–1741 (2000).
Google Scholar
Mazzetti, I. et al. A role for chemokines in the induction of chondrocyte phenotype modulation. Arthritis Rheum. 50, 12–22 (2004).
Google Scholar
Chuckpaiwong, B., Charles, H. C., Kraus, V. B., Guilak, F. & Nunley, J. A. Age-associated increases in the size of the infrapatellar fat pad in knee osteoarthritis as measured by 3T MRI. J. Orthop. Res. 28, 1149–1154 (2010).
Google Scholar
Klein-Wieringa, I. R. et al. Inflammatory Cells in Patients with Endstage Knee Osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad. J. Rheumatol. 43, 771–778 (2016).
Google Scholar
Cascio, G., Schiera, G. & Di Liegro, I. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases. Curr. Diab. Rev. 8, 2–17 (2012).
Google Scholar
Serhan, C. N. The resolution of inflammation: the devil in the flask and in the details. FASEB J. 25, 1441–1448 (2011).
Google Scholar
Gierman, L. M. et al. Metabolic profiling reveals differences in concentrations of oxylipins and fatty acids secreted by the infrapatellar fat pad of end-stage osteoarthritis and normal donors. Arthritis Rheum. 65, 2606–2614 (2013).
Google Scholar
Mustonen, A. M. et al. Distinct fatty acid signatures in infrapatellar fat pad and synovial fluid of patients with osteoarthritis versus rheumatoid arthritis. Arthritis Res Ther. 21, 124 (2019).
Google Scholar
Conde, J. et al. Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann. Rheum. Dis. 70, 551–559 (2011).
Google Scholar
Conde, J. et al. Identification of novel adipokines in the joint. Differential expression in healthy and osteoarthritis tissues. PLoS One 10, e0123601 (2015).
Google Scholar
Conde, J. et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann. Rheum. Dis. 73, 631–633 (2014).
Google Scholar
Zhang, C. et al. FABP4 as a biomarker for knee osteoarthritis. Biomark. Med. 12, 107–118 (2018).
Google Scholar
Belluzzi, E. et al. Infrapatellar fat pad gene expression and protein production in patients with and without osteoarthritis. Int. J. Mol. Sci. 21, 6016 (2020).
Google Scholar
Dumond, H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48, 3118–3129 (2003).
Google Scholar
Presle, N. et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr. Cartil. 14, 690–695 (2006).
Google Scholar
Bao, J. P. et al. Leptin plays a catabolic role on articular cartilage. Mol. Biol. Rep. 37, 3265–3272 (2010).
Google Scholar
Vuolteenaho, K. et al. Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage— Mediator Role of NO in Leptin-Induced, IL-6, and IL-8 Production. Mediators Inflamm. 1, 345838 (2009).
Griffin, T. M., Huebner, J. L., Kraus, V. B. & Guilak, F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheumatism 60, 2935–2944 (2009).
Google Scholar
Otero, M. et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1198–1201 (2006).
Google Scholar
Calvet, J. et al. Synovial fluid adipokines are associated with clinical severity in knee osteoarthritis: a cross-sectional study in female patients with joint effusion. Arthritis Res Ther. 18, 207 (2016).
Google Scholar
Bohnsack, M. et al. Influence of an infrapatellar fat pad edema on patellofemoral biomechanics and knee kinematics: a possible relation to the anterior knee pain syndrome. Arch. Orthop. Trauma Surg. 129, 1025–1030 (2009).
Google Scholar
Son, Y. M. et al. Immunomodulatory effect of resistin in human dendritic cells stimulated with lipoteichoic acid from Staphylococcus aureus. Biochem Biophys. Res. Commun. 376, 599–604 (2008).
Google Scholar
Shibata, R. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J. Biol. Chem. 279, 28670–28674 (2004).
Google Scholar
Kondo, M. et al. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J. Biol. Chem. 284, 1718–1724 (2009).
Google Scholar
Wang, K. et al. Serum levels of interleukin-17 and adiponectin are associated with infrapatellar fat pad volume and signal intensity alteration in patients with knee osteoarthritis. Arthritis Res. Ther. 18, 1–7 (2016).
Google Scholar
Murrell, G. A., Jang, D. & Williams, R. J. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem. Biophys. Res. Commun. 206, 15–21 (1995).
Google Scholar
Kang, E. H. et al. Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res. Ther. 12, R231 (2010).
Google Scholar
Miyachi, Y. et al. A reduced M1- like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci. Rep. 8, 16113 (2018).
Google Scholar
Bastiaansen-Jenniskens, Y. M. et al. Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann. Rheum. Dis. 71, 288–294 (2012).
Google Scholar
de Jong, A. J. et al. Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP). Arthritis Res. Ther. 19, 186 (2017).
Google Scholar
Clockaerts, S. et al. Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1β and inhibited by peroxisome proliferator activated receptor α agonist. Ann. Rheum. Dis. 71, 1012–1018 (2012).
Google Scholar
Belluzzi, E. et al. Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. Biomed. Res. Int. 1, 6390182 (2019).
Distel, E. et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum. 60, 3374–3377 (2009).
Google Scholar
He, J. et al. Infrapatellar fat pad aggravates degeneration of acute traumatized cartilage: a possible role for interleukin-6. Osteoarthr. Cartil. 25, 138–145 (2017).
Google Scholar
Schnoor, M., Alcaide, P., Voisin, M. B. & van Buul, J. D. Recruitment of Immune Cells into Inflamed Tissues: Consequences for Endothelial Barrier Integrity and Tissue Functionality. Mediators Inflamm. 1, 1561368 (2016).
Takano, S. et al. Vascular Endothelial Growth Factor Is Regulated by the Canonical and Noncanonical Transforming Growth Factor-β Pathway in Synovial Fibroblasts Derived from Osteoarthritis Patients. BioMed. Res. Int. 6959056, 1–6 (2019).
Google Scholar
Haywood, L. et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 48, 2173–2177 (2003).
Google Scholar
Bennell, K., Hodges, P., Mellor, R., Bexander, C. & Souvlis, T. The nature of anterior knee pain following injection of hypertonic saline into the infrapatellar fat pad. J. Orthop. Res. 22, 116–121 (2004).
Google Scholar
Ballegaard, C. et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthr. Cartil. 22, 933–940 (2014).
Google Scholar
Han, W. et al. Hypointense signals in the infrapatellar fat pad assessed by magnetic resonance imaging are associated with knee symptoms and structure in older adults: a cohort study. Arthritis Res Ther. 18, 234 (2016).
Google Scholar
Bas, S. et al. Adipokines correlate with pain in lower limb osteoarthritis: different associations in hip and knee. Int Orthop. 38, 2577–2583 (2014).
Google Scholar
Inomata, K. et al. Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskelet. Disord. 20, 1–10 (2019).
Google Scholar
An, J. et al. Inhibition of fibrotic changes in infrapatellar fat pad alleviates persistent pain and articular cartilage degeneration in monoiodoacetic acid-induced rat arthritis model. Osteoarthr. Cartil. 29, 380–388 (2020).
Google Scholar
Bohnsack, M., Meier, F. & Walter, G. F. Distribution of substance-P nerves inside the infrapatellar fat pad and the adjacent synovial tissue: a neurohistological approach to anterior knee pain syndrome. Arch. Orthop. Trauma Surg. 125, 592–597 (2005).
Google Scholar
Stanisz, A. M. Neurogenic inflammation: role of substance P. NeuroImmune Biol. 1, 373–378 (2001).
Google Scholar
Hoffa, A. The Influence of the Adipose Tissue with Regard to the Pathology of the Knee Joint. JAMA 43, 795–796 (1904).
Google Scholar
Kimura, T. et al. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir. Res. 17, 19 (2016).
Google Scholar
Davis, J. E. et al. Effusion-synovitis and infrapatellar fat pad signal intensity alteration differentiate accelerated knee osteoarthritis. Rheumatology 58, 418–426 (2019).
Google Scholar
Teichtahl, A. J. et al. A large infrapatellar fat pad protects against knee pain and lateral tibial cartilage volume loss. Arthritis Res Ther. 10, 318 (2015).
Google Scholar
Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).
Google Scholar
Manferdini, C. et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65, 1271–1281 (2013).
Google Scholar
Desando, G. et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 15, R22 (2013).
Google Scholar
Pers, Y. M. et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl. Med 5, 847–856 (2016).
Google Scholar
Garcia, J. et al. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat. Stem Cells Int 1, 6969726 (2016).
Mantripragada, V. et al. Donor-matched comparison of chondrogenic progenitors resident in human infrapatellar fat pad, synovium, and periosteum-implications for cartilage repair. Connect Tissue Res. 60, 597–610 (2019).
Google Scholar
Luo, L., Thorpe, S. D., Buckley, C. T. & Kelly, D. J. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells. Biomed. Mater. 10, 055011 (2015).
Google Scholar
Prabhakar, A., Lynch, A. P. & Ahearne, M. Self-Assembled Infrapatellar Fat-Pad Progenitor Cells on a Poly-ε-Caprolactone Film For Cartilage Regeneration. Artif. Organs 40, 376–384 (2016).
Google Scholar
Kouroupis, D., Kaplan, L. D. & Best, T. M. Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Sci. Rep. 12, 3609 (2022).
Google Scholar
Skalska, U. et al. Articular and subcutaneous adipose tissues of rheumatoid arthritis patients represent equal sources of immunoregulatory mesenchymal stem cells. Autoimmunity 50, 441–450 (2017).
Google Scholar
Meurot, C. et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J. Orthop. Transl. 32, 121–129 (2022).
Google Scholar
Daheshia, M. & Yao, J. Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 35, 2306–2312 (2008).
Google Scholar
Akeson, G. & Malemud, C. J. A Role for Soluble IL-6 Receptor in Osteoarthritis. J. Funct. Morphol. Kinesiol. 2, 27 (2017).
Google Scholar
García-Manrique, M. et al. Synovial fluid but not plasma interleukin-8 is associated with clinical severity and inflammatory markers in knee osteoarthritis women with joint effusion. Sci. Rep. 11, 5258 (2021).
Google Scholar
Nagao, M. et al. Vascular Endothelial Growth Factor in Cartilage Development and Osteoarthritis. Sci. Rep. 7, 13027 (2017).
Google Scholar
Yan, M., Zhang, J., Yang, H. & Sun, Y. The role of leptin in osteoarthritis. Medicine 97, e0257 (2018).
Google Scholar
Zhao, C. W. et al. An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediators Inflamm. 1, 1532164 (2019).
Feng, X., Xiao, J. & Bai, L. Role of adiponectin in osteoarthritis. Front. cell developmental Biol. 10, 992764 (2022).
Google Scholar
link