Kidney disease and reproductive health

0
Kidney disease and reproductive health
  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 395, 709–733 (2020).

  • Dumanski, S. M. & Ahmed, S. B. Fertility and reproductive care in chronic kidney disease. J. Nephrol. 32, 39–50 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mills, K. T. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88, 950–957 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feig, D. S. Epidemiology and therapeutic strategies for women with preexisting diabetes in pregnancy: how far have we come? The 2021 Norbert Freinkel Award Lecture. Diabetes Care 45, 2484–2491 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mackin, S. T. et al. Diabetes and pregnancy: national trends over a 15 year period. Diabetologia 61, 1081–1088 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. C. et al. Trends in prepregnancy obesity and association with adverse pregnancy outcomes in the United States, 2013 to 2018. J. Am. Heart Assoc. 10, e020717 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strauss, A. et al. Obesity in pregnant women: a 20-year analysis of the German experience. Eur. J. Clin. Nutr. 75, 1757–1763 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poston, L. et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 4, 1025–1036 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ananth, C. V. et al. Changes in the prevalence of chronic hypertension in pregnancy, United States, 1970 to 2010. Hypertension 74, 1089–1095 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Care of pregnant women. Boston Med. Surg. J. 166:292–293 (1912).

  • Jesudason, S. & Tong, A. The patient experience of kidney disease and pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 57, 77–88 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ralston, E. R. et al. Exploring biopsychosocial correlates of pregnancy risk and pregnancy intention in women with chronic kidney disease. J. Nephrol. 36, 1361–1372 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pregnancy and renal disease. Lancet. 2:801–802 (1975).

  • Mc Laughlin, L. et al. Feminizing care pathways: mixed-methods study of reproductive options, decision making, pregnancy, post-natal care and parenting amongst women with kidney disease. J. Adv. Nurs. 79, 3127–3146 (2023).

    Article 

    Google Scholar 

  • Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23, 337–366 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camaioni A., Klinger F. G., Campagnolo L., Salustri A. The influence of pentraxin 3 on the ovarian function and its impact on fertility. Front. Immunol. 9, 2808 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rojas, R., Clegg, D. J. & Palmer, B. F. Amenorrhea and estrogen disorders in kidney disease. Semin. Nephrol. 41, 126–132 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiles, K. et al. Anti-Müllerian hormone concentrations in women with chronic kidney disease. Clin. Kidney J. 14, 537–542 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, J. et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 7, 1938–1946 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holley, J. L., Schmidt, R. J., Bender, F. H., Dumler, F. & Schiff, M. Gynecologic and reproductive issues in women on dialysis. Am. J. Kidney Dis. 29, 685–690 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, S. Pregnancy in chronic renal insufficiency and end-stage renal disease. Am. J. Kidney Dis. 33, 235–252 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hewawasam, E. et al. Factors influencing fertility rates in Australian women receiving kidney replacement therapy: analysis of linked Australia and New Zealand Dialysis and Transplant Registry and perinatal data over 22 years. Nephrol. Dial. Transpl. 37, 1152–1161 (2022).

    Article 

    Google Scholar 

  • Vrijlandt, W. A. L. et al. Prevalence of chronic kidney disease in women of reproductive age and observed birth rates. J. Nephrol. 36, 1341–1347 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uldall, P. R., Kerr, D. N. & Tacchi, D. Sterility and cyclophosphamide. Lancet. 1, 693–694 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gajjar, R., Miller, S. D., Meyers, K. E. & Ginsberg, J. P. Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatr. Nephrol. 30, 1099–1106 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) glomerular diseases work group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 100, S1–S276 (2021).

  • Dines, V. A., Garovic, V. D., Parashuram, S., Cosio, F. G. & Kattah, A. G. Pregnancy, contraception, and menopause in advanced chronic kidney disease and kidney transplant. Womens Health Rep. 2, 488–496 (2021).

    Google Scholar 

  • Rytz, C. L. et al. Menstrual abnormalities and reproductive lifespan in females with CKD: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 17, 1742–1753 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dines, V. A. & Garovic, V. D. Menopause and chronic kidney disease. Nat. Rev. Nephrol. 20, 4–5 (2023).

    Article 

    Google Scholar 

  • Vellanki, K. & Hou, S. Menopause in CKD. Am. J. Kidney Dis. 71, 710–719 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Iwase, A. et al. Anti‐Müllerian hormone as a marker of ovarian reserve: what have we learned, and what should we know? Reprod. Med. Biol. 15, 127–136 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seifer, D. B., Baker, V. L. & Leader, B. Age-specific serum anti-Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil. Steril. 95, 747–750 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Şenateş, E. et al. Serum anti-Müllerian hormone levels are lower in reproductive-age women with Crohn’s disease compared to healthy control women. J. Crohns Colitis 7, e29–e34 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Cakmak, E., Karakus, S., Demirpence, O. & Coskun, B. D. Ovarian reserve assessment in celiac patients of reproductive age. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 24, 1152–1157 (2018).

    CAS 

    Google Scholar 

  • Karampatou, A. et al. Premature ovarian senescence and a high miscarriage rate impair fertility in women with HCV. J. Hepatol. (2017).

  • Aydogan Mathyk, B., Aslan Cetin, B., Bilici, S., Fasse, J. & Avci, P. Evaluation of ovarian reserve in women with psoriasis. Gynecol. Endocrinol. 35, 608–611 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, C. et al. The value of anti-Müllerian hormone in the prediction of spontaneous pregnancy: a systematic review and meta-analysis. Front. Endocrinol. 12, 695157 (2021).

    Article 

    Google Scholar 

  • Steiner, A. Z. et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA 318, 1367–1376 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venturella, R. et al. OvAge: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters. J. Ovarian Res. 8, 21 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, T. et al. Assessment and quantification of ovarian reserve on the basis of machine learning models. Front. Endocrinol. 14, 1087429 (2023).

    Article 

    Google Scholar 

  • Shah, W. et al. The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front. Endocrinol. 12, 648141 (2021).

    Article 

    Google Scholar 

  • Bhattacharya, I. et al. Testosterone augments FSH signaling by upregulating the expression and activity of FSH-Receptor in Pubertal Primate Sertoli cells. Mol. Cell Endocrinol. 482, 70–80 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scarabelli, L., Caviglia, D., Bottazzi, C. & Palmero, S. Prolactin effect on pre-pubertal Sertoli cell proliferation and metabolism. J. Endocrinol. Invest. 26, 718–722 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guillaumot, P., Tabone, E. & Benahmed, M. Sertoli cells as potential targets of prolactin action in the testis. Mol. Cell Endocrinol. 122, 199–206 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petersen, C. & Soder, O. The Sertoli cell — a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm. Res. 66, 153–161 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Palmer, B. F. Sexual dysfunction in men and women with chronic kidney disease and end-stage kidney disease. Adv. Ren. Replace. Ther. 10, 48–60 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Eckersten, D., Giwercman, A. & Christensson, A. Male patients with terminal renal failure exhibit low serum levels of antimüllerian hormone. Asian J. Androl. 17, 149–153 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gill-Sharma, M. K. Prolactin and male fertility: the long and short feedback regulation. Int. J. Endocrinol. 2009, 687259 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Romejko, K., Rymarz, A., Sadownik, H. & Niemczyk, S. Testosterone deficiency as one of the major endocrine disorders in chronic kidney disease. Nutrients 14, 3438 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khurana, K. K. et al. Serum testosterone levels and mortality in men with CKD stages 3–4. Am. J. Kidney Dis. 64, 367–374 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fantus, R. J. et al. Serum total testosterone and premature mortality among men in the USA. Eur. Urol. Open. Sci. 29, 89–92 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ros, S. & Carrero, J. J. Endocrine alterations and cardiovascular risk in CKD: is there a link? Nefrol. Engl. Ed. 33, 181–187 (2013).

    Google Scholar 

  • Guay, A., Seftel, A. D. & Traish, A. Hypogonadism in men with erectile dysfunction may be related to a host of chronic illnesses. Int. J. Impot. Res. 22, 9–19 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bass, A. et al. The impact of nocturnal hemodialysis on sexual function. BMC Nephrol. 13, 67 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Eps, C. et al. Changes in serum prolactin, sex hormones and thyroid function with alternate nightly nocturnal home haemodialysis. Nephrology 17, 42–47 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kuczera, P., Więcek, A. & Adamczak, M. Impaired fertility in women and men with chronic kidney disease. Adv. Clin. Exp. Med. 31, 187–195 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Eckersten, D., Giwercman, A., Pihlsgård, M., Bruun, L. & Christensson, A. Impact of kidney transplantation on reproductive hormone levels in males: a longitudinal study. Nephron 138, 192–201 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Kidney transplantation improve semen quality in patients with dialysis: a systematic review and meta-analysis. Andrologia 53, e14158 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lehtihet, M. & Hylander, B. Semen quality in men with chronic kidney disease and its correlation with chronic kidney disease stages. Andrologia 47, 1103–1108 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boitrelle, F. et al. The sixth edition of the WHO manual for human semen analysis: a critical review and SWOT analysis. Life 11, 1368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonde, J. P. et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet Lond. Engl. 352, 1172–1177 (1998).

    Article 
    CAS 

    Google Scholar 

  • Slama, R. et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum. Reprod. Oxf. Engl. 17, 503–515 (2002).

    Article 
    CAS 

    Google Scholar 

  • Björndahl, L. A paradigmatic shift in the care of male factor infertility: how can the recommendations for basic semen examination in the sixth edition of the WHO manual and the ISO 23162:2021 standard help? Reprod. Biomed. Online 45, 731–736 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Esteves, S. C. Evolution of the World Health Organization semen analysis manual: where are we? Nat. Rev. Urol. 19, 439–446 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Haddock, L. et al. Sperm DNA fragmentation is a novel biomarker for early pregnancy loss. Reprod. Biomed. Online 42, 175–184 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, Y. Relationship among traditional semen parameters, sperm DNA fragmentation, and unexplained recurrent miscarriage: a systematic review and meta-analysis. Front. Endocrinol. 12, 802632 (2021).

    Article 

    Google Scholar 

  • Borges, E. et al. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil. Steril. 112, 483–490 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Homa, S. T. et al. A comparison between two assays for measuring seminal oxidative stress and their relationship with sperm DNA fragmentation and semen parameters. Genes 10, 236 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aitken, R. J. & De Iuliis, G. N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duni, A., Liakopoulos, V., Roumeliotis, S., Peschos, D. & Dounousi, E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int. J. Mol. Sci. 20, 3711 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Javadneia, A. et al. Sperm DNA damage before and after kidney transplantation. Nephro-Urol. Mon. 11, e86990 (2019).

    Google Scholar 

  • Colombijn, J. M. et al. Antioxidants for adults with chronic kidney disease. Cochrane Database Syst. Rev. 11, CD008176 (2023).

    PubMed 

    Google Scholar 

  • de Ligny, W. et al. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 5, CD007411 (2022).

    PubMed 

    Google Scholar 

  • Pyrgidis, N. et al. Prevalence of erectile dysfunction in patients with end-stage renal disease: a systematic review and meta-analysis. J. Sex. Med. 18, 113–120 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Edey, M. M. Male sexual dysfunction and chronic kidney disease. Front. Med. 4, 32 (2017).

    Article 

    Google Scholar 

  • Lotti, F. & Maggi, M. Sexual dysfunction and male infertility. Nat. Rev. Urol. 15, 287–307 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Vecchio, M. et al. Interventions for treating sexual dysfunction in patients with chronic kidney disease. Cochrane Database Syst. Rev. 8, CD007747 (2010).

  • Lundy, S. D. & Vij, S. C. Male infertility in renal failure and transplantation. Transl. Androl. Urol. 8, 173–181 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mondal, S., Sinha Roy, P. P. & Pal, D. K. Sexual well-being and fertility in male renal transplant recipients: a study in a tertiary care centre. Urol. J. 89, 636–640 (2022).

    Article 

    Google Scholar 

  • Tainio, J. et al. Testicular function, semen quality, and fertility in young men after renal transplantation during childhood or adolescence. Transplantation 98, 987–993 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bearak, J. et al. Unintended pregnancy and abortion by income, region, and the legal status of abortion: estimates from a comprehensive model for 1990–2019. Lancet Glob. Health 8, e1152–e1161 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ghazizadeh, S. et al. Unwanted pregnancy among kidney transplant recipients in Iran. Transpl. Proc. 37, 3085–3086 (2005).

    Article 
    CAS 

    Google Scholar 

  • Lessan-Pezeshki, M. et al. Fertility and contraceptive issues after kidney transplantation in women. Transpl. Proc. 36, 1405–1406 (2004).

    Article 
    CAS 

    Google Scholar 

  • Shah, S., Christianson, A. L., Bumb, S. & Verma, P. Contraceptive use among women with kidney transplants in the United States. J. Nephrol. 35, 629–638 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Britton, L. Unintended pregnancy: a systematic review of contraception use and counseling in women with cancer. Clin. J. Oncol. Nurs. 21, 189–196 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips-Bell, G. S., Sappenfield, W., Robbins, C. L. & Hernandez, L. Chronic diseases and use of contraception among women at risk of unintended pregnancy. J. Womens Health 25, 1262–1269 (2016).

    Article 

    Google Scholar 

  • Harris, M. L. et al. Patterns of contraceptive use among young Australian women with chronic disease: findings from a prospective cohort study. Reprod. Health 19, 111 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, R. J., Mark, P. B., Patel, R. K., Stevens, K. K. & Palmer, N. Renal association clinical practice guideline in post-operative care in the kidney transplant recipient. BMC Nephrol. 18, 174 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiles, K. et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 20, 401 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brynhildsen, J. Combined hormonal contraceptives: prescribing patterns, compliance, and benefits versus risks. Ther. Adv. Drug. Saf. 5, 201–213 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attini, R. et al. Contraception in chronic kidney disease: a best practice position statement by the Kidney and Pregnancy Group of the Italian Society of Nephrology. J. Nephrol. 33, 1343–1359 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Browne, H., Manipalviratn, S. & Armstrong, A. Using an intrauterine device in immunocompromised women. Obstet. Gynecol. 112, 667–669 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balbach, M. et al. On-demand male contraception via acute inhibition of soluble adenylyl cyclase. Nat. Commun. 14, 637 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koilpillai, J. N., Nunan, E., Butler, L., Pinaffi, F. & Butcher, J. T. Reversible contraception in males: an obtainable target? Biology 13, 291 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thirumalai, A. & Page, S. T. Recent developments in male contraception. Drugs 79, 11–20 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trussell, J. Contraceptive failure in the United States. Contraception 83, 397–404 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbe, C. R., Page, S. T. & Thirumalai, A. Male contraception. Yale J. Biol. Med. 93, 603–613 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berer, M. Abortion law and policy around the world. Health Hum. Rights 19, 13–27 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, A. & Hladunewich, M. A. Nephrology and women’s health post-Roe v. Wade: we must do better. Nat. Rev. Nephrol. 18, 741–742 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rizzolo, K., Faucett, A. & Kendrick, J. Implications of antiabortion laws on patients with kidney disease in pregnancy. Clin. J. Am. Soc. Nephrol. 18, 276–278 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, G. E. et al. The mental and physical health impacts of overturning Roe v Wade. J. Nerv. Ment. Dis. 210, 891–893 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Piccoli, G. B. et al. The children of dialysis: live-born babies from on-dialysis mothers in Italy — an epidemiological perspective comparing dialysis, kidney transplantation and the overall population. Nephrol. Dial. Transpl. 29, 1578–1586 (2014).

    Article 

    Google Scholar 

  • Ahmed, S. B., Vitek, W. S. & Holley, J. L. Fertility, contraception, and novel reproductive technologies in chronic kidney disease. Semin. Nephrol. 37, 327–336 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tangren, J., Nadel, M. & Hladunewich, M. A. Pregnancy and end-stage renal disease. Blood Purif. 45, 194–200 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Horsey K. The future of surrogacy: a review of current global trends and national landscapes. Reprod Biomed Online. 48, 103764.

  • Madej, A., Mazanowska, N., Cyganek, A., Pazik, J. & Pietrzak, B. Neonatal and maternal outcomes among women with glomerulonephritis. Am. J. Nephrol. 51, 534–541 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sifontis, N. M. et al. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation 82, 1698–1702 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drugs and Lactation Database (LactMed). National Center for Biotechnology Information (2006).

  • Flint, J. et al. BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding-Part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids. Rheumatol. Oxf. Engl. 55, 1693–1697 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wallace, D. J., Gudsoorkar, V. S., Weisman, M. H. & Venuturupalli, S. R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 8, 522–533 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zemlickis, D. et al. Fetal outcome after in utero exposure to cancer chemotherapy. Arch. Intern. Med. 152, 573–576 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boulay, H. et al. Maternal, foetal and child consequences of immunosuppressive drugs during pregnancy in women with organ transplant: a review. Clin. Kidney J. 14, 1871–1878 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrotta, K., Kiernan, E., Bandoli, G., Manaster, R. & Chambers, C. Pregnancy outcomes following maternal treatment with rituximab prior to or during pregnancy: a case series. Rheumatol. Adv. Pract. 5, rkaa074 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kao, J. H. et al. Pregnancy outcomes in patients treated with belimumab: report from real-world experience. Semin. Arthritis Rheum. 51, 963–968 (2021).

    Article 
    PubMed 

    Google Scholar 

  • FDA. Rapamune. (sirolimus) drug information sheet. https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/021083s006lbl.pdf.

  • Ponticelli, C. & Moroni, G. Fetal toxicity of immunosuppressive drugs in pregnancy. J. Clin. Med. 7, 552 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tshering, S., Dorji, N., Youden, S. & Wangchuk, D. Maternal sirolimus therapy and fetal growth restriction. Arch. Clin. Cases 8, 19–24 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lip, G. Y., Churchill, D., Beevers, M., Auckett, A. & Beevers, D. G. Angiotensin-converting-enzyme inhibitors in early pregnancy. Lancet. 350, 1446–1447 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC). Postmarketing surveillance for angiotensin-converting enzyme inhibitor use during the first trimester of pregnancy — United States, Canada, and Israel, 1987–1995. MMWR Morb. Mortal. Wkly. Rep. 46, 240–242 (1997).

    Google Scholar 

  • Bar, J., Hod, M. & Merlob, P. Angiotensin converting enzyme inhibitors use in the first trimester of pregnancy. Int. J. Risk Saf. Med. 10, 23–26 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steffensen, F. H., Nielsen, G. L., Sørensen, H. T., Olesen, C. & Olsen, J. Pregnancy outcome with ACE-inhibitor use in early pregnancy. Lancet Lond. Engl. 351, 596 (1998).

    Article 
    CAS 

    Google Scholar 

  • Li, D. K., Yang, C., Andrade, S., Tavares, V. & Ferber, J. R. Maternal exposure to angiotensin converting enzyme inhibitors in the first trimester and risk of malformations in offspring: a retrospective cohort study. BMJ 343, d5931 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hünseler, C. et al. Angiotensin II receptor blocker induced fetopathy: 7 cases. Klin. Pädiatr. 223, 10–14 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Mosley, J. F., Smith, L., Everton, E. & Fellner, C. Sodium-glucose linked transporter 2 (SGLT2) inhibitors in the management of type-2 diabetes: a drug class overview. Pharm. Ther. 40, 451–462 (2015).

    Google Scholar 

  • Tangren, J. et al. Pre-Pregnancy eGFR and the risk of adverse maternal and fetal outcomes: a population-based study. J. Am. Soc. Nephrol. 34, 656–667 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bramham, K. Diabetic nephropathy and pregnancy. Semin. Nephrol. 37, 362–369 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Al Khalaf, S. et al. Impact of chronic hypertension and antihypertensive treatment on adverse perinatal outcomes: systematic review and meta-analysis. J. Am. Heart Assoc. 10, e018494 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiles, K. et al. The impact of chronic kidney disease stages 3–5 on pregnancy outcomes. Nephrol. Dial. Transpl. 36, 2008–2017 (2021).

    Article 

    Google Scholar 

  • Piccoli, G. B. et al. Risk of adverse pregnancy outcomes in women with CKD. J. Am. Soc. Nephrol. 26, 2011–2022 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • EMA recommends additional measures to prevent use of mycophenolate in pregnancy. 2015. Available: (2015).

  • Damkier, P., Passier, A., Bo Petersen, L., Havnen, G. & Thestrup Pedersen, A. J. Changing of the guards: EMA warning on paternal use of mycophenolate mofetil: an unnecessary and insufficiently substantiated precaution. Birth Defects Res. A Clin. Mol. Teratol. 106, 860–861 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Midtvedt, K., Bergan, S., Reisæter, A. V., Vikse, B. E. & Åsberg, A. Exposure to mycophenolate and fatherhood. Transplantation 101, e214–e217 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le, H. L. et al. Usage of tacrolimus and mycophenolic acid during conception, pregnancy, and lactation, and its implications for therapeutic drug monitoring: a systematic critical review. Ther. Drug. Monit. 42, 518–531 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Boyer, A. et al. Paternity in male kidney transplant recipients: a French national survey, the PATeRNAL study. BMC Nephrol. 21, 483 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jesudason, S. et al. Fatherhood and kidney replacement therapy: analysis of the Australian and New Zealand dialysis and transplant (ANZDATA) registry. Am. J. Kidney Dis. 76, 444–446 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jones, D. C. & Hayslett, J. P. Outcome of pregnancy in women with moderate or severe renal insufficiency. N. Engl. J. Med. 335, 226–232 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bramham, K. et al. Pregnancy outcome in women with chronic kidney disease: a prospective cohort study. Reprod. Sci. 18, 623–630 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Bramham, K. et al. Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease. Kidney Int. 89, 874–885 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Y. et al. The pregnancy outcomes in patients with stage 3–4 chronic kidney disease and the effects of pregnancy in the long-term kidney function. J. Nephrol. 31, 953–960 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reynolds, M. L. et al. Pregnancy history and kidney disease progression among women enrolled in cure glomerulonephropathy. Kidney Int. Rep. 8, 805–817 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Major, R. W. et al. The Kidney Failure Risk Equation for prediction of end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLoS Med. 16, e1002955 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ralston, E. et al. POS-234 pregnancy-associated progression of chronic kidney disease: development of a clinical predictive tool. Kidney Int. Rep. 6, S99 (2021).

    Article 

    Google Scholar 

  • Ralston, E. et al. Pregnancy-associated progression of chronic kidney disease: a study protocol for the development and validation of a clinical predictive tool (PREDICT). J. Nephrol. 3, 773–776 (2024).

  • Smith, P. et al. ORCHARD: a model for conducting pragmatic randomised trials in pregnancy. J. Nephrol. 37, 1411—1413 (2024).

  • Webb, A. J. et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51, 784–790 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kemmner, S. et al. Dietary nitrate load lowers blood pressure and renal resistive index in patients with chronic kidney disease: a pilot study. Nitric Oxide Biol. Chem. 64, 7–15 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ormesher, L. et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide 80, 37–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • ORCHARD: Study to prevent progression of kidney disease in pregnancy. https://www.isrctn.com/ISRCTN91211980.

  • Cabiddu, G. et al. A best practice position statement on pregnancy in chronic kidney disease: the Italian Study Group on Kidney and Pregnancy. J. Nephrol. 29, 277–303 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jong, M. F. C., de, Hamersvelt, H. W., van, Empel, I. W. H., van, Nijkamp, E. J. W. & Lely, A. T. Summary of the Dutch practice guideline on pregnancy wish and pregnancy in CKD. Kidney Int. Rep. 7, 2575–2588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henderson, J. T. et al. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 160, 695–703 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rolnik, D. L. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613–622 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gordon, C. et al. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatol. Oxf. Engl. 57, e1–e45 (2018).

    Article 

    Google Scholar 

  • Izmirly, P. M. et al. Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann. Rheum. Dis. 69, 1827–1830 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barsalou, J. et al. Prenatal exposure to antimalarials decreases the risk of cardiac but not non-cardiac neonatal lupus: a single-centre cohort study. Rheumatol. Oxf. Engl. 56, 1552–1559 (2017).

    Article 
    CAS 

    Google Scholar 

  • Derdulska, J. M. et al. Neonatal lupus erythematosus — practical guidelines. J. Perinat. Med. 49, 529–538 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, H. K. et al. Exposure to amlodipine in the first trimester of pregnancy and during breastfeeding. Hypertens. Pregnancy 26, 179–187 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mito, A. et al. Safety of amlodipine in early pregnancy. J. Am. Heart Assoc. 8, e012093 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishikawa, T. et al. Risk of major congenital malformations associated with first-trimester antihypertensives, including amlodipine and methyldopa: a large claims database study 2010–2019. Pregnancy Hypertens. 31, 73–83 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Benachi, A. et al. Down syndrome maternal serum screening in patients with renal disease. Am. J. Obstet. Gynecol. 203, 60.e1–e4 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Valentin, M. et al. First-trimester combined screening for trisomy 21 in women with renal disease. Prenat. Diagn. 35, 244–248 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qureshi, H. et al. BCSH guideline for the use of anti-D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfus. Med. Oxf. Engl. 24, 8–20 (2014).

    Article 
    CAS 

    Google Scholar 

  • National Institute for Health and Care Excellence. Antenatal Care [NICE Guideline No. 201] (2021).

  • Nevis, I. F. et al. Pregnancy outcomes in women with chronic kidney disease: a systematic review. Clin. J. Am. Soc. Nephrol. 6, 2587–2598 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. J. et al. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin. J. Am. Soc. Nephrol. 10, 1964–1978 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • NICE guideline. Hypertension in pregnancy: diagnosis and management. Am. J. Obstet. Gynecol. 77, S1–S22 (2019).

    Google Scholar 

  • Oliverio, A. L. & Hladunewich, M. A. End stage kidney disease and dialysis in pregnancy. Adv. Chronic Kidney Dis. 27, 477–485 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, S. H. Frequency and outcome of pregnancy in women on dialysis. Am. J. Kidney Dis. 23, 60–63 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bagon, J. A. et al. Pregnancy and dialysis. Am. J. Kidney Dis. 31, 756 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Basok, E. K. et al. Assessment of female sexual function and quality of life in predialysis, peritoneal dialysis, hemodialysis, and renal transplant patients. Int. Urol. Nephrol. 41, 473–481 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Matuszkiewicz-Rowinska, J. et al. Endometrial morphology and pituitary-gonadal axis dysfunction in women of reproductive age undergoing chronic haemodialysis — a multicentre study. Nephrol. Dial. Transpl. 19, 2074–2077 (2004).

    Article 

    Google Scholar 

  • Hosfield, E. M., Rabban, J. T., Chen, L. M. & Zaloudek, C. J. Squamous metaplasia of the ovarian surface epithelium and subsurface fibrosis: distinctive pathologic findings in the ovaries and fallopian tubes of patients on peritoneal dialysis. Int. J. Gynecol. Pathol. 27, 465–474 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Confortini, P. et al. Full term successful pregnancy and successful delivery in a patient on chronic haemodialysis. Proc. Eur. Dial. Transpl. Assoc. 8, 74–80 (1971).

    Google Scholar 

  • Piccoli, G. B. et al. Pregnancy in dialysis patients in the new millennium: a systematic review and meta-regression analysis correlating dialysis schedules and pregnancy outcomes. Nephrol. Dial. Transplant. 31, 1915–1934 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Baouche, H. et al. Pregnancy in women on chronic dialysis in the last decade (2010–2020): a systematic review. Clin. Kidney J. 16, 138–150 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Hladunewich, M. A. et al. Intensive hemodialysis associates with improved pregnancy outcomes: a Canadian and United States cohort comparison. J. Am. Soc. Nephrol. 25, 1103–1109 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luders, C., Titan, S. M., Kahhale, S., Francisco, R. P. & Zugaib, M. Risk factors for adverse fetal outcome in hemodialysis pregnant women. Kidney Int. Rep. 3, 1077–1088 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bramham, K. et al. Pregnancy in renal transplant recipients: a UK national cohort study. Clin. J. Am. Soc. Nephrol. 8, 290–298 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. Lancet 398, 341–354 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, M. Y. et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 52, 186–195 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chappell, L. C. et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation 128, 2121–2131 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duhig, K. E. et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet 393, 1807–1818 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cerdeira, A. S. et al. Randomized interventional study on prediction of preeclampsia/eclampsia in women with suspected preeclampsia: INSPIRE. Hypertension 74, 983–990 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wiles, K. et al. Placental and endothelial biomarkers for the prediction of superimposed pre-eclampsia in chronic kidney disease. Pregnancy Hypertens. 24, 58–64 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gupta, M., Feinberg, B. B. & Burwick, R. M. Thrombotic microangiopathies of pregnancy: differential diagnosis. Pregnancy Hypertens. 12, 29–34 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moroni, G., Calatroni, M., Donato, B. & Ponticelli, C. Kidney biopsy in pregnant women with glomerular diseases: focus on lupus nephritis. J. Clin. Med. 12, 1834 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harel, Z. et al. Serum creatinine levels before, during, and after pregnancy. JAMA 321, 205–207 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machado S et al. Acute kidney injury in pregnancy: a clinical challenge. J. Nephrol. 25, 19–30 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Wiles, K. et al. Serum creatinine in pregnancy: a systematic review. Kidney Int. Rep. 4, 408–419 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gama, R. M. et al. Acute kidney injury e-alerts in pregnancy: rates, recognition and recovery. Nephrol. Dial. Transpl. 36, 1023–1030 (2021).

    Article 

    Google Scholar 

  • Conti-Ramsden, F. I. et al. Pregnancy-related acute kidney injury in preeclampsia: risk factors and renal outcomes. Hypertension 74, 1144–1151 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Noble, R. A., Lucas, B. J. & Selby, N. M. Long-term outcomes in patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 15, 423–429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciciu, E., Paṣatu-Cornea, A. M., Petcu, L. C. & Tuţă, L. A. Early diagnosis and management of maternal ureterohydronephrosis during pregnancy. Exp. Ther. Med. 23, 27 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Denstedt, J. D. & Razvi, H. Management of urinary calculi during pregnancy. J. Urol. 148, 1072–1074 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. Y. et al. Canadian Urological Association guideline: management of ureteral calculi — full-text. Can. Urol. Assoc. J. 15, E676–E690 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, K. et al. WCN24-1183 Assessing kidney function in pregnancy: gestation specific centile reference ranges for serum creatinine, urea, cystatin c and beta-2-microglobulin. Kidney Int. Rep. 9, S435–S436 (2024).

    Article 

    Google Scholar 

  • Chu, C. D. et al. CKD awareness among US adults by future risk of kidney failure. Am. J. Kidney Dis. 76, 174–183 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piccoli, G. B. et al. Adding creatinine to routine pregnancy tests: a decision tree for calculating the cost of identifying patients with CKD in pregnancy. Nephrol. Dial. Transpl. 38, 148–157 (2023).

    Article 
    CAS 

    Google Scholar 

  • Crump, C., Sundquist, J. & Sundquist, K. Preterm or early term birth and risk of autism. Pediatrics 148, e2020032300 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, C., Geng, H., Liu, W. & Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine 96, e6696 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiles, K. S., Nelson-Piercy, C. & Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat. Rev. Nephrol. 14, 165–184 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ramakrishnan, A., Lee, L. J., Mitchell, L. E. & Agopian, A. J. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr. Cardiol. 36, 1442 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Gelder, M. M. H. J. et al. Maternal hypertensive disorders, antihypertensive medication use, and the risk of birth defects: a case-control study. BJOG 122, 1002–1009 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Magee, L. A. et al. Less-tight versus tight control of hypertension in pregnancy. N. Engl. J. Med. 372, 407–417 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • At, T. et al. Treatment for mild chronic hypertension during pregnancy. N. Engl. J. Med. 386, 1781–1792.

  • Luyckx, V. A. & Chevalier, R. L. Impact of early life development on later onset chronic kidney disease and hypertension and the role of evolutionary trade-offs. Exp. Physiol. 107, 410–414 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hughson, M., Farris, A. B., Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Sutherland, M. R. & Black, M. J. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat. Rev. Nephrol. 19, 218–228 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Stonestreet, B. S., Hansen, N. B., Laptook, A. R. & Oh, W. Glucocorticoid accelerates renal functional maturation in fetal lambs. Early Hum. Dev. 8, 331–341 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leeson, C. P. M., Kattenhorn, M., Morley, R., Lucas, A. & Deanfield, J. E. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103, 1264–1268 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cwiek, A. et al. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci. Rep. 11, 21667 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grillo, M. A., Mariani, G. & Ferraris, J. R. Prematurity and low birth weight in neonates as a risk factor for obesity, hypertension, and chronic kidney disease in pediatric and adult age. Front. Med. 8, 769734 (2021).

    Article 

    Google Scholar 

  • Kelsey, T. W. et al. Ovarian volume throughout life: a validated normative model. PLoS ONE 8, e71465 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharpe, R. M., McKinnell, C., Kivlin, C. & Fisher, J. S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reprod. Camb. Engl. 125, 769–784 (2003).

    Article 
    CAS 

    Google Scholar 

  • Ratcliffe, J. M., Gladen, B. C., Wilcox, A. J. & Herbst, A. L. Does early exposure to maternal smoking affect future fertility in adult males? Reprod. Toxicol. Elmsford N. 6, 297–307 (1992).

    Article 
    CAS 

    Google Scholar 

  • Jensen, T. K. et al. Adult and prenatal exposures to tobacco smoke as risk indicators of fertility among 430 Danish couples. Am. J. Epidemiol. 148, 992–997 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Storgaard, L. et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiol. Camb. Mass. 14, 278–286 (2003).

    Article 

    Google Scholar 

  • Jensen, T. K. et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am. J. Epidemiol. 159, 49–58 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Juul, A. et al. Possible fetal determinants of male infertility. Nat. Rev. Endocrinol. 10, 553–562 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torra, R., Furlano, M., Ortiz, A. & Ars, E. Genetic kidney diseases as an underrecognized cause of chronic kidney disease: the key role of international registry reports. Clin. Kidney J. 14, 1879–1885 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connaughton, D. M. et al. The Irish kidney gene project — prevalence of family history in patients with kidney disease in Ireland. Nephron 130, 293–301 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Thakoordeen-Reddy, S. et al. Maternal variants within the apolipoprotein L1 gene are associated with preeclampsia in a South African cohort of African ancestry. Eur. J. Obstet. Gynecol. Reprod. Biol. 246, 129–133 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reidy, K. J. et al. Fetal — not maternal — APOL1 genotype associated with risk for preeclampsia in those with African ancestry. Am. J. Hum. Genet. 103, 367–376 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sampson, M. G. et al. Integrative genomics identifies novel associations with APOL1 risk genotypes in Black Neptune subjects. J. Am. Soc. Nephrol. 27, 814–823 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moxey-Mims, M. Kidney disease in African American children: biological and nonbiological disparities. Am. J. Kidney Dis. 72, S17–S21 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Coscia, L. A. et al. Update on the teratogenicity of maternal mycophenolate mofetil. J. Pediatr. Genet. 4, 42–55 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pham-Huy, A. et al. From mother to baby: antenatal exposure to monoclonal antibody biologics. Expert. Rev. Clin. Immunol. 15, 221–229 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Committee on Infectious Diseases AA of P, Kimberlin, D. W., Barnett, E. D., Lynfield, R., Sawyer, M. H. (eds). Immunization in Special Clinical Circumstances. In: Red Book: 2021–2024 Report of the Committee on Infectious Diseases [Internet]. American Academy of Pediatrics, (2021) [cited 2024 Oct 22]. p. 0. Available from: https://doi.org/10.1542/9781610025782.

  • Hallstensen, R. F. et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology 220, 452–459 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kramer, M. S. & Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, CD003517 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kramer M. S. & Kakuma R. in Protecting Infants through Human Milk. (eds Pickering L. K., Morrow A. L., Ruiz-Palacios G. M. & Schanler R.J.) Advances in Experimental Medicine and Biology. 63–77 (Springer, 2004).

  • Stuebe, A. M., Rich-Edwards, J. W., Willett, W. C., Manson, J. E. & Michels, K. B. Duration of lactation and incidence of type 2 diabetes. JAMA 294, 2601–2610 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rød, B. E., Torkildsen, Ø., Myhr, K.-M., Bø, L. & Wergeland, S. Safety of breast feeding during rituximab treatment in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 94, 38 (2023).

    Article 

    Google Scholar 

  • Stefanovic, V. The extended use of eculizumab in pregnancy and complement activationassociated diseases affecting maternal, fetal and neonatal kidneys — the future is now? J. Clin. Med. 8, 407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • APILAM. [cited 2024 May 30]. http://e-lactancia.org/privacidad/.

  • Eisenberg, M. L., Li, S., Cullen, M. R. & Baker, L. C. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil. Steril. 105, 629–636 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kitlinski, M., Giwercman, A., Christensson, A., Nilsson, P. M. & Elenkov, A. Prevalence of impaired renal function among childless men as compared to fathers: a population-based study. Sci. Rep. 14, 7720 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imbasciati, E. et al. Pregnancy in CKD stages 3 to 5: fetal and maternal outcomes. Am. J. Kidney Dis. 49, 753–762 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Gouveia, I. F., Silva, J. R., Santos, C. & Carvalho, C. Maternal and fetal outcomes of pregnancy in chronic kidney disease: diagnostic challenges, surveillance and treatment throughout the spectrum of kidney disease. J. Bras. Nefrol. 43, 88–102 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bramham, K. Pregnancy in renal transplant recipients and donors. Semin. Nephrol. 37, 370–377 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Banerjee, I. et al. Health outcomes of children born to mothers with chronic kidney disease: a pilot study. Pediatr. Rep. 2, 22–25 (2010).

    Article 

    Google Scholar 

  • Abou-Jaoude, P. et al. What about the renal function during childhood of children born from dialysed mothers? Nephrol. Dial. Transpl. 27, 2365–2369 (2012).

    Article 
    CAS 

    Google Scholar 

  • Blowey, D. L. & Warady, B. A. Outcome of infants born to women with chronic kidney disease. Adv. Chronic Kidney Dis. 14, 199–205 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Tong, A., Brown, M. A., Winkelmayer, W. C., Craig, J. C. & Jesudason, S. Perspectives on pregnancy in women with CKD: a semistructured interview study. Am. J. Kidney Dis. 66, 951–961 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Ralston, E. R., Smith, P., Chilcot, J., Silverio, S. A. & Bramham, K. Perceptions of risk in pregnancy with chronic disease: a systematic review and thematic synthesis. PLoS ONE 16, e0254956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scherzer, A. L., Chhagan, M., Kauchali, S. & Susser, E. Global perspective on early diagnosis and intervention for children with developmental delays and disabilities. Dev. Med. Child. Neurol. 54, 1079–1084 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Bateman, B. T. et al. Late pregnancy β blocker exposure and risks of neonatal hypoglycemia and bradycardia. Pediatrics 138, e20160731 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, J. L. et al. Pharmacokinetics of amlodipine besylate at delivery and during lactation. Pregnancy Hypertens. 11, 77–80 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, R. H. et al. Beta-blockers increase the risk of being born small for gestational age or of being institutionalised during infancy. BJOG 121, 1090–1096 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Magee L. A., Duley L. Oral beta-blockers for mild to moderate hypertension during pregnancy. Cochrane Database Syst. Rev. 2003, CD002863 (2000).

    PubMed 

    Google Scholar 

  • Nice, F. J. & Luo, A. C. Medications and breast-feeding: current concepts. J. Am. Pharm. Assoc. 52, 86–94 (2012).

    Article 

    Google Scholar 

  • National Collaborating Centre for Women’s and Children’s Health (UK). Hypertension in Pregnancy: The Management of Hypertensive Disorders During Pregnancy (RCOG Press, 2010).

  • Ornoy, A. Pharmacological treatment of attention deficit hyperactivity disorder during pregnancy and lactation. Pharm. Res. 35, 46 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Schreiber, K. et al. British Society for Rheumatology guideline on prescribing drugs in pregnancy and breastfeeding: comorbidity medications used in rheumatology practice. Rheumatology 62, e89–e104 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Sau, A. et al. Azathioprine and breastfeeding: is it safe? BJOG 114, 498–501 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bramham, K., Chusney, G., Lee, J., Lightstone, L. & Nelson-Piercy, C. Breastfeeding and tacrolimus: serial monitoring in breast-fed and bottle-fed infants. Clin. J. Am. Soc. Nephrol. 8, 563 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muller, D. R. P. et al. Effects of GLP-1 agonists and SGLT2 inhibitors during pregnancy and lactation on offspring outcomes: a systematic review of the evidence. Front. Endocrinol. 14 (2023).

  • World Health Organization. Breastfeeding and maternal medication: recommendations for drugs in the eleventh WHO model list of essential drugs. (2002).

  • Clark, S. L., Porter, T. F. & West, F. G. Coumarin derivatives and breast-feeding. Obstet. Gynecol. 95, 938–940 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *