Amino acid metabolism in kidney health and disease

0
Amino acid metabolism in kidney health and disease
  • Brosnan, J. T. & Brosnan, M. E. Branched-chain amino acids: enzyme and substrate regulation1, 2, 3. J. Nutr. 136, S207–S211 (2006).

    Article 

    Google Scholar 

  • Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lian, K. et al. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes 64, 49–59 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claris-Appiani, A., Assael, B. M., Tirelli, A. S., Marra, G. & Cavanna, G. Lack of glomerular hemodynamic stimulation after infusion of branched-chain amino acids. Kidney Int. 33, 91–94 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castellino, P., Levin, R., Shohat, J. & DeFronzo, R. A. Effect of specific amino acid groups on renal hemodynamics in humans. Am. J. Physiol. Renal Physiol. 258, F992–F997 (1990).

    Article 
    CAS 

    Google Scholar 

  • Schrijvers, B. F., Rasch, R., Tilton, R. G. & Flyvbjerg, A. High protein-induced glomerular hypertrophy is vascular endothelial growth factor-dependent. Kidney Int. 61, 1600–1604 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stipanuk, M. H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 150, 2494S–2505S (2020).

    Article 
    PubMed 

    Google Scholar 

  • Li, J. et al. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Mutat. Res. Mutat. Res. 788, 108396 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stipanuk, M. H. & Ueki, I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 34, 17–32 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chesney, R. W., Han, X. & Patters, A. B. Taurine and the renal system. J. Biomed. Sci. 17, S4 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chesney, R. W., Gusowski, N. & Dabbagh, S. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids. J. Clin. Invest. 76, 2213–2221 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, X., Patters, A. B., Jones, D. P., Zelikovic, I. & Chesney, R. W. The taurine transporter: mechanisms of regulation. Acta Physiol. 187, 61–73 (2006).

    Article 
    CAS 

    Google Scholar 

  • Reymond, I., Bitoun, M., Levillain, O. & Tappaz, M. Regional expression and histological localization of cysteine sulfinate decarboxylase mRNA in the rat kidney. J. Histochem. Cytochem. J. Histochem. Soc. 48, 1461–1468 (2000).

    Article 
    CAS 

    Google Scholar 

  • Holeček, M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 14, 1987 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606.e3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowry, M., Hall, D. E., Hall, M. S. & Brosnan, J. T. Renal metabolism of amino acids in vivo: studies on serine and glycine fluxes. Am. J. Physiol. Renal Physiol. 252, F304–F309 (1987).

    Article 
    CAS 

    Google Scholar 

  • Lowry, M., Hall, D. E. & Brosnan, J. T. Serine synthesis in rat kidney: studies with perfused kidney and cortical tubules. Am. J. Physiol. Renal Physiol. 250, F649–F658 (1986).

    Article 
    CAS 

    Google Scholar 

  • Jois, M., Hall, D. E. & Brosnan, J. T. Serine synthesis by the rat kidney. N. Asp. Ren. Ammon. Metab. 63, 136–140 (1988).

    CAS 

    Google Scholar 

  • Wang, W. et al. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45, 463–477 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Petrossian, T. C. & Clarke, S. G. Uncovering the human methyltransferasome. Mol. Cell. Proteom. 10, M110.000976 (2011).

    Article 

    Google Scholar 

  • Pitts, R. F. & MacLeod, M. B. Synthesis of serine by the dog kidney in vivo. Am. J. Physiol. 222, 394–398 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alves, A., Bassot, A., Bulteau, A.-L., Pirola, L. & Morio, B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients 11, 1356 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lam, C. K. L. et al. Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J. Biol. Chem. 285, 21913–21921 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Razak, M. A., Begum, P. S., Viswanath, B. & Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid. Med. Cell. Longev. 2017, 1716701 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meléndez-Hevia, E. & de Paz-Lugo, P. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis. J. Biosci. 33, 771–780 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Tizianello, A., Ferrari, G. D., Garibotto, G., Gurreri, G. & Robaudo, C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 65, 1162–1173 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tessari, P. et al. Phenylalanine hydroxylation across the kidney in humans rapid communication. Kidney Int. 56, 2168–2172 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Møller, N., Meek, S., Bigelow, M., Andrews, J. & Nair, K. S. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc. Natl Acad. Sci. USA 97, 1242–1246 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boirie, Y., Albright, R., Bigelow, M. & Nair, K. S. Impairment of phenylalanine conversion to tyrosine in end-stage renal disease causing tyrosine deficiency. Kidney Int. 66, 591–596 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kopple, J. D. Phenylalanine and tyrosine metabolism in chronic kidney failure. J. Nutr. 137, 1586S–1590S (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hsu, C.-N. & Tain, Y.-L. Developmental programming and reprogramming of hypertension and kidney disease: impact of tryptophan metabolism. Int. J. Mol. Sci. 21, 8705 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castro-Portuguez, R. & Sutphin, G. L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 132, 110841 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badawy, A. A.-B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10, 1178646917691938 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, X. et al. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial. Int. 21, 161–167 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holeček, M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients 12, 848 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W., Liu, T. & Yin, M. Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem. Toxicol. 46, 1503–1509 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brosnan, J. T. The 1986 Borden award lecture. The role of the kidney in amino acid metabolism and nutrition. Can. J. Physiol. Pharmacol. 65, 2355–2362 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhanakoti, S. N., Brosnan, J. T., Herzberg, G. R. & Brosnan, M. E. Renal arginine synthesis: studies in vitro and in vivo. Am. J. Physiol. 259, E437–E442 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Houdijk, A. P. et al. Glutamine-enriched enteral diet increases renal arginine production. J. Parenter. Enter. Nutr. 18, 422–426 (1994).

    Article 
    CAS 

    Google Scholar 

  • Weiner, I. D., Mitch, W. E. & Sands, J. M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 10, 1444–1458 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bankir, L., Bouby, N., Trinh-Trang-Tan, M.-M., Ahloulay, M. & Promeneur, D. Direct and indirect cost of urea excretion. Kidney Int. 49, 1598–1607 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez, G. O., Epstein, M., Rietberg, B. & Loutzenhiser, R. Metabolism of arginine by the isolated perfused rat kidney. Am. J. Physiol. 235, F376–F380 (1978).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discov. 8, 1–14 (2022).

    Article 

    Google Scholar 

  • Pernow, J. & Jung, C. The emerging role of arginase in endothelial dysfunction in diabetes. Curr. Vasc. Pharmacol. 14, 155–162 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • You, H., Gao, T., Cooper, T. K., Morris, S. M. & Awad, A. S. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int. 84, 1189–1197 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bachmann, S. & Mundel, P. Nitric oxide in the kidney: synthesis, localization, and function. Am. J. Kidney Dis. 24, 112–129 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17, 575–590 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, D. M. Polyamines. An overview. Mol. Biotechnol. 11, 229–250 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation. Anat. Cell Biol. 50, 200–206 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsikas, D. Urinary dimethylamine (DMA) and its precursor asymmetric dimethylarginine (ADMA) in clinical medicine, in the context of nitric oxide (NO) and beyond. J. Clin. Med. 9, 1843 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duranton, F. et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin. J. Am. Soc. Nephrol. 9, 37–45 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, J., Ladeiras, D., Yu, Y., Ming, X.-F. & Yang, Z. Detrimental effects of chronic l-arginine rich food on aging kidney. Front. Pharmacol. 11, 582155 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brosnan, J. T. & Brosnan, M. E. Glutamate: a truly functional amino acid. Amino Acids 45, 413–418 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boron, W. F. & Boulpaep, E. L. Medical Physiology. (2016).

  • Stumvoll, M., Perriello, G., Meyer, C. & Gerich, J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55, 778–792 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van de Poll, M. C. G., Soeters, P. B., Deutz, N. E. P., Fearon, K. C. H. & Dejong, C. H. C. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 79, 185–197 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Rinschen, M. M. et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat. Commun. 13, 4099 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, Y., Chrysopoulou, M. & Rinschen, M. M. Integrative physiology of lysine metabolites. Physiol. Genomics 55, 579–586 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thelle, K., Christensen, E. I., Vorum, H., Ørskov, H. & Birn, H. Characterization of proteinuria and tubular protein uptake in a new model of oral L-lysine administration in rats. Kidney Int. 69, 1333–1340 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jozi, F. et al. L-Lysine ameliorates diabetic nephropathy in rats with streptozotocin-induced diabetes mellitus. BioMed. Res. Int. 2022, 4547312 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. J. et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest. 123, 4309–4317 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMahon, G. M. et al. Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney Int. 91, 1426–1435 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishioka, N. et al. Carnitine supplements for people with chronic kidney disease requiring dialysis. Cochrane Database Syst. Rev. 12, CD013601 (2022).

    PubMed 

    Google Scholar 

  • Guder, W. G. & Schorn, T. Metabolic interactions between renal proline and glutamine metabolism. (1991).

  • Phang, J. M., Pandhare, J. & Liu, Y. The metabolism of proline as microenvironmental stress substrate. J. Nutr. 138, 2008S–2015S (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pandhare, J., Donald, S. P., Cooper, S. K. & Phang, J. M. Regulation and function of proline oxidase under nutrient stress. J. Cell. Biochem. 107, 759–768 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensgens, H. E., Meijer, A. J., Williamson, J. R., Gimpel, J. A. & Tager, J. M. Prolone metabolism in isolated rat liver cells. Biochem. J. 170, 699–707 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwörer, S. et al. Proline biosynthesis is a vent for TGFβ‐induced mitochondrial redox stress. EMBO J. 39, e103334 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berg, R. A. & Prockop, D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–120 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lowry, M., Hall, D. E. & Brosnan, J. T. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metabolism 34, 955–961 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet Lond. Engl. 393, 919–935 (2019).

    Article 

    Google Scholar 

  • Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Podrini, C. et al. Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Commun. Biol. 1, 1–14 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hwang, V. J. et al. The cpk model of recessive PKD shows glutamine dependence associated with the production of the oncometabolite 2-hydroxyglutarate. Am. J. Physiol. Renal Physiol. 309, F492–F498 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flowers, E. M. et al. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat. Commun. 9, 814 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, X. & Hu, H. The roles of 2-hydroxyglutarate. Front. Cell Dev. Biol. 9, 651317 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lomelino, C. L., Andring, J. T., McKenna, R. & Kilberg, M. S. Asparagine synthetase: function, structure, and role in disease. J. Biol. Chem. 292, 19952–19958 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baliga, M. M. et al. Metabolic profiling in children and young adults with autosomal dominant polycystic kidney disease. Sci. Rep. 11, 6629 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durán, R. V. & Hall, M. N. Glutaminolysis feeds mTORC1. Cell Cycle 11, 4107–4108 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durán, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Trott, J. F. et al. Arginine reprogramming in ADPKD results in arginine-dependent cystogenesis. Am. J. Physiol. Renal Physiol. 315, F1855–F1868 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramalingam, H. et al. A methionine-mettl3-N6-methyladenosine axis promotes polycystic kidney disease. Cell Metab. 33, 1234–1247.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parrot, C. et al. c-Myc is a regulator of the PKD1 gene and PC1-induced pathogenesis. Hum. Mol. Genet. 28, 751–763 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M. & Shibata, H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci. 27, 87 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maddocks, O. D. K., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grant, G. A. D-3-Phosphoglycerate dehydrogenase. Front. Mol. Biosci. 5, 110 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, K. et al. Life span extension by glucose restriction is abrogated by methionine supplementation: cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci. Adv. 6, eaba1306 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torres, J. A. et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 30, 1007–1023.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oehm, S. et al. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 38, 1623–1635 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cukoski, S. et al. Feasibility and impact of ketogenic dietary interventions in polycystic kidney disease: KETO-ADPKD — a randomized controlled trial. Cell Rep. Med. 4, 101283 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knol, M. G. E. et al. Higher beta-hydroxybutyrate ketone levels associated with a slower kidney function decline in ADPKD. Nephrol. Dial. Transplant. 39, 838–847 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Anthony, J. C. et al. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 130, 2413–2419 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamamoto, J. et al. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease. Kidney Int. 92, 377–387 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, D. T. et al. The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression. JCI Insight 8, e154773 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klawitter, J. et al. Kynurenines in polycystic kidney disease. J. Nephrol. 36, 83–91 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pawlak, K., Domaniewski, T., Mysliwiec, M. & Pawlak, D. Kynurenines and oxidative status are independently associated with thrombomodulin and von Willebrand factor levels in patients with end-stage renal disease. Thromb. Res. 124, 452–457 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koye, D. N., Magliano, D. J., Nelson, R. G. & Pavkov, M. E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis. 25, 121–132 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  • Xie, X. et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet Lond. Engl. 387, 435–443 (2016).

    Article 

    Google Scholar 

  • de Vries, A. P. J. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).

    Article 
    PubMed 

    Google Scholar 

  • DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fotheringham, A. K., Gallo, L. A., Borg, D. J. & Forbes, J. M. Advanced glycation end products (AGEs) and chronic kidney disease: does the modern diet AGE the kidney? Nutrients 14, 2675 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmer, N. D. et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J. Clin. Endocrinol. Metab. 100, E463–E468 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tillin, T. et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 58, 968–979 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jäger, S. et al. Mendelian randomization study on amino acid metabolism suggests tyrosine as causal trait for type 2 diabetes. Nutrients 12, 3890 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mi, N. et al. Branched-chain amino acids attenuate early kidney injury in diabetic rats. Biochem. Biophys. Res. Commun. 466, 240–246 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tofte, N. et al. Metabolomic assessment reveals alteration in polyols and branched chain amino acids associated with present and future renal impairment in a discovery cohort of 637 persons with type 1 diabetes. Front. Endocrinol. 10, 818 (2019).

    Article 

    Google Scholar 

  • Welsh, P. et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 61, 1581–1591 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. Metabolomic profiling of amino acids in human plasma distinguishes diabetic kidney disease from type 2 diabetes mellitus. Front. Med. 8, 765873 (2021).

    Article 

    Google Scholar 

  • Zhu, H. et al. Impaired amino acid metabolism and its correlation with diabetic kidney disease progression in type 2 diabetes mellitus. Nutrients 14, 3345 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majumder, S. et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J. Clin. Invest. 128, 483–499 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Komers, R. et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab. Investig. J. Tech. Methods Pathol. 93, 543–552 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chen, H. et al. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat. Commun. 13, 3835 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Handzlik, M. K. et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614, 118–124 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos-Silva, J. C. et al. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 47, 1533–1548 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, R. et al. Taurine supplementation reverses diabetes-induced podocytes injury via modulation of the CSE/TRPC6 axis and improvement of mitochondrial function. Nephron 144, 84–95 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Branco, R. C. S. et al. Long-term taurine supplementation leads to enhanced hepatic steatosis, renal dysfunction and hyperglycemia in mice fed on a high-fat diet. Adv. Exp. Med. Biol. 803, 339–351 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tao, X., Zhang, Z., Yang, Z. & Rao, B. The effects of taurine supplementation on diabetes mellitus in humans: a systematic review and meta-analysis. Food Chem. Mol. Sci. 4, 100106 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO), Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 6 (2012).

  • Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Price, S. R. et al. Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism. J. Am. Soc. Nephrol. 9, 439 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sieckmann, T. et al. Strikingly conserved gene expression changes of polyamine regulating enzymes among various forms of acute and chronic kidney injury. Kidney Int. 104, 90–107 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boudonck, K. J. et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37, 280–292 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oken, D. E., Sprinkel, F. M., Kirschbaum, B. B. & Landwehr, D. M. Amino acid therapy in the treatment of experimental acute renal failure in the rat. Kidney Int. 17, 14–23 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abel, R. M. et al. Improved survival from acute renal failure after treatment with intravenous essential L-amino acids and glucose. N. Engl. J. Med. 288, 695–699 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singer, P. High-dose amino acid infusion preserves diuresis and improves nitrogen balance in non-oliguric acute renal failure. Wien. Klin. Wochenschr. 119, 218–222 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landoni, G. et al. A randomized trial of intravenous amino acids for kidney protection. N. Engl. J. Med. (2024).

  • Mitchell, J. R. et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 9, 40–53 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koehler, F. C. et al. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl. Res. J. Lab. Clin. Med. 244, 32–46 (2022).

    CAS 

    Google Scholar 

  • Späth, M. R. et al. Organ protection by caloric restriction depends on activation of the de novo NAD+ synthesis pathway. J. Am. Soc. Nephrol. 34, 772–792 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grundmann, F. et al. Preoperative short-term calorie restriction for prevention of acute kidney injury after cardiac surgery: a randomized, controlled, open-label, pilot trial. J. Am. Heart Assoc. 7, e008181 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grundmann, F. et al. Dietary restriction for prevention of contrast-induced acute kidney injury in patients undergoing percutaneous coronary angiography: a randomized controlled trial. Sci. Rep. 10, 5202 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robertson, L. T. et al. Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J. Nutr. 145, 1717–1727 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hine, C. et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132–144 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Osterholt, T. et al. Preoperative short‐term restriction of sulfur‐containing amino acid intake for prevention of acute kidney injury after cardiac surgery: a randomized, controlled, double‐blind, translational trial. J. Am. Heart Assoc. 11, e025229 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piret, S. E. et al. Krüppel-like factor 6–mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc. Natl Acad. Sci. USA 118, e2024414118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagata, S. et al. Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol. Rep. 8, e14557 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro Garrido, A. et al. Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B0AT1 (Slc6a19). Am. J. Physiol. Renal Physiol. 323, F455–F467 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, e97957 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasabe, J. et al. Interplay between microbial D-amino acids and host D-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 1–7 (2016).

    Article 

    Google Scholar 

  • Meyer, T., Ichikawa, I., Zatz, R. & Brenner, B. The renal hemodynamic response to amino acid infusion in the rat. Trans. Assoc. Am. Physicians 96, 76–83 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Seney, F. D. Jr, Persson, E. G. & Wright, F. S. Modification of tubuloglomerular feedback signal by dietary protein. Am. J. Physiol. Renal Physiol. 252, F83–F90 (1987).

    Article 

    Google Scholar 

  • Yao, B., Xu, J., Qi, Z., Harris, R. C. & Zhang, M.-Z. Role of renal cortical cyclooxygenase-2 expression in hyperfiltration in rats with high-protein intake. Am. J. Physiol. Renal Physiol. 291, F368–F374 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sekine, Y. et al. Amino acid transporter LAT3 is required for podocyte development and function. J. Am. Soc. Nephrol. 20, 1586–1596 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurayama, R. et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab. Invest. 91, 992–1006 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, Z. & Liang, M. Renal metabolism and hypertension. Nat. Commun. 12, 963 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Y. et al. Urinary metabolites associated with blood pressure on a low- or high-sodium diet. Theranostics 8, 1468–1480 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinschen, M. M. et al. Metabolic rewiring of the hypertensive kidney. Sci. Signal. 12, (2019).

  • Shah, V. O. et al. Plasma metabolomic profiles in different stages of CKD. Clin. J. Am. Soc. Nephrol. 8, 363–370 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, Y. et al. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140, 1646–1652 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Obeid, W., Hiremath, S. & Topf, J. M. Protein restriction for CKD: time to move on. Kidney360 3, 1611–1615 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koppe, L., Fouque, D. & Soulage, C. O. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins 10, 155 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y., Mihajlovic, M., Janssen, M. J. & Masereeuw, R. The uremic toxin indoxyl sulfate accelerates senescence in kidney proximal tubule cells. Toxins 15, 242 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, C.-Y., Chang, S.-C. & Wu, M.-S. Uremic toxins induce kidney fibrosis by activating intrarenal renin–angiotensin–aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7, e34026 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Owada, S. et al. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am. J. Nephrol. 28, 446–454 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dou, L. et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int. 93, 986–999 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolachalama, V. B. et al. Uremic solute-aryl hydrocarbon receptor-tissue factor axis associates with thrombosis after vascular injury in humans. J. Am. Soc. Nephrol. 29, 1063–1072 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, K. P., Luo, F. J.-G., Plummer, N. S., Hostetter, T. H. & Meyer, T. W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 7, 982–988 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Y. et al. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci. Rep. 10, 12675 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernstrom, J. D. & Fernstrom, M. H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 137, 1539S–1547S (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meijers, B. K. I. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes, A. L. F. et al. Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients with chronic kidney disease. J. Bras. Nefrol. 42, 307–314 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barba, C. et al. A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Sci. Rep. 11, 19184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Billing, A. M. et al. Metabolic communication by SGLT2 inhibition. Circulation 149, 860–884 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pillai, S. M. et al. Differential impact of dietary branched chain and aromatic amino acids on chronic kidney disease progression in rats. Front. Physiol. 10, 1460 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilcken, D. E. & Wilcken, B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J. Clin. Invest. 57, 1079–1082 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamison, R. L. et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease a randomized controlled trial. JAMA 298, 1163–1170 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martí-Carvajal, A. J., Solà, I., Lathyris, D. & Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 8, CD006612 (2017).

    PubMed 

    Google Scholar 

  • Xiao, Y. et al. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int. J. Biochem. Cell Biol. 67, 158–166 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Green, T. J. et al. Homocysteine-lowering vitamins do not lower plasma S-adenosylhomocysteine in older people with elevated homocysteine concentrations. Br. J. Nutr. 103, 1629–1634 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stam, F. et al. Homocysteine clearance and methylation flux rates in health and end-stage renal disease: association with S-adenosylhomocysteine. Am. J. Physiol. Renal Physiol. 287, F215–F223 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ingrosso, D. et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361, 1693–1699 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garibotto, G. et al. The kidney is the major site of S-adenosylhomocysteine disposal in humans. Kidney Int. 76, 293–296 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schievink, B. et al. Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes. Diabetes Obes. Metab. 18, 64–71 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hesaka, A. et al. D-Serine reflects kidney function and diseases. Sci. Rep. 9, 5104 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H., Jang, H. B., Yoo, M.-G., Park, S. I. & Lee, H.-J. Amino acid metabolites associated with chronic kidney disease: an eight-year follow-up Korean epidemiology study. Biomedicines 8, 222 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dahabiyeh, L. A. et al. Metabolomics profiling distinctively identified end-stage renal disease patients from chronic kidney disease patients. Sci. Rep. 13, 6161 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhee, E. P. et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 24, 1330–1338 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bello, A. K. et al. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 18, 378–395 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Post, A. et al. Amino acid homeostasis and fatigue in chronic hemodialysis patients. Nutrients 14, 2810 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikizler, T. A. et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am. J. Physiol. Endocrinol. Metab. 282, E107–E116 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hendriks, F. K. et al. Branched-chain ketoacid co-ingestion with protein lowers amino acid oxidation during hemodialysis: a randomized controlled cross-over trial. Clin. Nutr. 42, 1436–1444 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koppe, L., Cassani de Oliveira, M. & Fouque, D. Ketoacid analogues supplementation in chronic kidney disease and future perspectives. Nutrients 11, 2071 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiele, I. et al. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, A. N. & Weiner, I. D. Sex differences in renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 320, F55–F60 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q., McDonough, A. A., Layton, H. E. & Layton, A. T. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am. J. Physiol. Renal Physiol. 315, F692–F700 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yahyaoui, R. & Pérez-Frías, J. Amino acid transport defects in human inherited metabolic disorders. Int. J. Mol. Sci. 21, 119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Online Mendelian Inheritance in Man, OMIM (2023).

  • Bröer, S. & Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935–1963 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Camargo, S. M., Poncet, N. & Verrey, F. in Studies of Epithelial Transporters and Ion Channels: Ion Channels and Transporters of Epithelia in Health and Disease Vol. 3 (eds Hamilton, K. L. & Devor, D. C.) 255–323 (Springer International Publishing, 2020).

  • Hediger, Matthias. A. SLCtables. (2019).

  • Grewer, C., Gameiro, A. & Rauen, T. SLC1 glutamate transporters. Pflugers Arch. 466, 3–24 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scopelliti, A. J., Heinzelmann, G., Kuyucak, S., Ryan, R. M. & Vandenberg, R. J. Na+ interactions with the neutral amino acid transporter ASCT1. J. Biol. Chem. 289, 17468–17479 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zerangue, N. & Kavanaugh, M. P. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J. Biol. Chem. 271, 27991–27994 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhutia, Y. D. & Ganapathy, V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim. Biophys. Acta 1863, 2531–2539 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fotiadis, D., Kanai, Y. & Palacín, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Asp. Med. 34, 139–158 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rasola, A., Galietta, L. J. V., Barone, V., Romeo, G. & Bagnasco, S. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett. 373, 229–233 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bröer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88, 249–286 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Bröer, A. et al. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem. J. 393, 421–430 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bröer, S. & Gether, U. The solute carrier 6 family of transporters. Br. J. Pharmacol. 167, 256–278 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagamori, S. et al. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc. Natl Acad. Sci. USA 113, 775–780 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thwaites, D. T. & Anderson, C. M. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 164, 1802–1816 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roshanbin, S. et al. Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. BMC Neurosci. 17, 43 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramadan, T. et al. Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J. Cell. Physiol. 206, 771–779 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J. Biol. Chem. 287, 35733–35746 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pillai, S. M. & Meredith, D. SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in xenopus laevis oocytes. J. Biol. Chem. 286, 2455–2460 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bodoy, S., Fotiadis, D., Stoeger, C., Kanai, Y. & Palacín, M. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol. Asp. Med. 34, 638–645 (2013).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *